
LDAP
PROGRAMMING
WITH JAVATM

LDAP
PROGRAMMING
WITH JAVATM

ROB WELTMAN and TONY DAHBURA

�
��

ADDISON–WESLEY

An Imprint of Addison Wesley Longman, Inc.
Reading, Massachusetts • Harlow, England • Menlo Park, California
Berkeley, California Don Mills, Ontario Sydney
Bonn Amsterdam Tokyo Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison Wesley Long-
man Inc. was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more
information, please contact:

AWL Direct Sales
Addison Wesley Longman, Inc.
One Jacob Way
Reading, Massachusetts 01867
(781) 944-3700

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data

Weltman, Rob, 1953–
LDAP programming with JavaTM / Rob Weltman, Tony Dahbura.

p. cm.
ISBN 0-201-65758-9
1. Java (Computer program language). 2. Computer network protocols. I. Dahbura,

Tony. II. Title.
QA76.73.J38 W47 2000
005.2'762—dc21 99–054510

Copyright © 2000 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher. Printed in the United States of America. Pub-
lished simultaneously in Canada.

ISBN 0-201-65758-9
Text printed on recycled paper
1 2 3 4 5 6 7 8 9 10—CRW—0403020100
First printing, January 2000

Preface. xvii
Acknowledgments . xxi

PART I INTRODUCTION . 1

CHAPTER 1 WHAT CAN YOU FIND IN A DIRECTORY? 3

What Is a Directory?. 4
What’s That Phone Number? . 6
Directory Clients for an Online Phone Book 7
Is He Really Who He Says He Is?. 10
Working Together . 14
Computers, Printers, Toasters . 16

CHAPTER 2 THE LINGUA FRANCA OF DIRECTORIES IS LDAP 19

A Brief History of Electronic Directories 19
I Heard It through the Grapevine 19
Directories for the Internet . 20
Directories for a Single Network:

Proprietary Solutions. 20
X.500: The “Heavyweight” Directory Service 21
From Humble Beginnings . 22

Future Directions for LDAP . 24

v

Contents

The LDAP Information and Naming Models:
How Directories Are Organized . 26

The LDAP Information Model . 26
The LDAP Naming Model . 30

LDAP Spoken Here . 31
Many Roads to Rome. 32

Directory SDK for C . 32
Directory SDK for Java . 33
Java Naming and Directory Interface 35

CHAPTER 3 MAY WE INTRODUCE—
DIRECTORY SDK FOR JAVA. 37

What Directory SDK for Java Can Do for You 37
Freedom from Protocol Handling 37
The Use of Standard Java Objects for Returning

and Processing Data . 38
Utility Classes for Handling LDAP-Specific Entities. 38
Full Access to All LDAP Services. 38
Flexible Authentication Models . 39
Write Once, Run Anywhere . 39
Multilayered Functionality . 39
A Platform for Directory-Enabled Applications 39

What Else Can the SDK Do for Me? . 40
Dynamic Organizational Chart. 40
Directory-Linking Tool . 41
Access Control for Existing or New Applications 43

Installation and Setup of the SDK . 45
Staying Current . 45
Installing the SDK . 45

Conclusion . 48

PART II GETTING STARTED . 49

CHAPTER 4 SETTING UP YOUR OWN DIRECTORY 51

Downloading and Installing Netscape Directory Server 51
Before You Download and Install the Software 51

vi Contents

Downloading Netscape Directory Server 52
Installing Netscape Directory Server 52
Setting Up the Sample Database . 55

Using the Command-Line Tools with Your New Directory 57
Finding Entries with LDAPSearch 57
Adding Entries to the Directory . 59
Understanding LDIF: How to Describe a

Directory Entry . 60
Object Classes: Determining What Information

Makes Up an Entry . 63
Choosing a Distinguished Name:

Where Do You Want to Add the Entry? 64
Examples of Defining and Adding Entries 64

Conclusion . 66

CHAPTER 5 SEARCHING WITH THE SDK . 67

Our First Search . 67
Host Name. 68
Port. 68
Base DN . 68
Scope . 68
Filter . 70
Attributes . 71
Search Preferences . 73
Our First Search Program . 74

Using Search Filters . 78
Handling Results . 80
Attributes in Detail . 83
I Want Only One Record and I Have the DN 85
Searching and Comparing . 87
More on Filters . 88
Sorting. 100
Authenticating for Searches . 102
Improving Directory Search Performance 103

Use Indexed Attributes . 104
Specify an Object Class to Get Only Entries

of the Desired Type . 104
Retrieve Only Attributes You Need 104
Keep the DN Handy . 105

Contents vii

Use compare Where It Makes Sense 105
Conclusion . 105

CHAPTER 6 CREATING AND MAINTAINING INFORMATION 107

Before We Can Update: Authentication Basics 107
Adding an Entry . 111

Summary of Steps to Add a New Entry. 111
Inserting Records from a Data File 113
Adding an Organizational Unit . 116
Processing Exceptions . 117

Modifying an Existing Entry . 117
Summary of Steps to Modify an Existing Entry 118
Adding an Attribute. 118
Modifying an Attribute . 118
Removing an Attribute . 119
Updating Multivalued Attributes 120
Storing Binary Data . 121
Storing Preferences and State. 135

Deleting an Entry . 147
Renaming an Entry: Modifying the RDN 151
Managing Groups. 158

Adding a User to a Group . 161
Removing a User from a Group . 161
Using the LDAPIsMember Bean. 162

Conclusion . 163

CHAPTER 7 SECURING THE DATA. 165

No Standards for Access Control. 165
Setting Up an Access Control List . 166
Viewing Access Control Lists through LDAP 172
Modifying Access Control Lists through LDAP 175
Authenticating to the Directory . 176
Using Password-Based Authentication. 177
Communicating over Secure Sockets Layer 178
Using Certificate-Based Authentication . 181

viii Contents

Using SASL Authentication . 182
Authenticating with SASL in LDAP 183
Callbacks in SASL . 184
The SASL Framework Classes. 186
Preparing to Use an Existing Mechanism 189
Your Own SaslClient and ClientFactory 190

Conclusion . 196

PART III GETTING DOWN AND DIRTY . 197

CHAPTER 8 MORE POWER TO THE BROWSER:
AN APPLET THAT SPEAKS LDAP. 199

What’s So Different about an Applet? . 199
Certificates and Signed Applets . 200
Writing LDAP Applets for Netscape Navigator 204

Requesting Connection Privileges 204
Packaging Your Applet . 209
Generating a Test Certificate . 209
Signing Your Code . 210
Testing Your Applet . 214
Using the Codebase as a Principal 215

Writing LDAP Applets for Microsoft Internet
Explorer . 215

Requesting Connection Privileges 216
Packaging Your Applet . 217
Generating a Test Certificate . 218
Signing Your Code . 218

Creating a Web Page for the Applet . 221
Writing LDAP Applets for Java Plug-In Software 221

Packaging Your Applet . 222
Generating a Key Pair and Self-signed Certificate. 222
Signing Your Code . 223
Setting Up the End User’s System 225

A Directory Viewer Applet . 229
A Simple Example for Java Plug-In Software 229

Conclusion . 241

Contents ix

CHAPTER 9 SCRIPTING LDAP: JAVASCRIPT AND JAVA 243

Accessing Java Applets from JavaScript. 243
Accessing Java Objects from JavaScript. 250

JavaScript Gotchas. 254
Handling Java Exceptions in JavaScript 255
Handling Arrays of Strings . 262
Requesting Privileges and Signing Your

JavaScript Code . 262
Accessing the LDAP Classes from JScript

in Internet Explorer . 264
Conclusion . 265

CHAPTER 10 DON’T REDO IT, REUSE IT: LDAP JAVABEANS 267

Invisible LDAP JavaBeans . 267
LDAPBasePropertySupport. 269
LDAPSimpleAuth . 274
LDAPGetEntries . 278
Directory-Based Authentication in JavaScript 287
Using PropertyChangeEvent Notifications 289

Graphical LDAP JavaBeans . 292
A Directory Browser . 292
A Directory Lister . 332

Conclusion . 340

CHAPTER 11 MAKE YOUR APPLICATION
LOCATION-INDEPENDENT . 341

The Teex Multicharacter-Set Text Editor. 342
The Teex JavaBean. 342
A Class for User Preferences . 344
Storing Preferences as Attributes in User Entries 353
Saving Preferences as an Object in the Directory 365
Using Directory Structure to Model Attributes. 369

Conclusion . 375

x Contents

CHAPTER 12 MODELING RELATIONSHIPS . 377

Mirroring an Organizational Structure . 377
Attributes as Pointers . 378

Parsing the Reporting Relationships
in a Directory. 380

An Alternative Strategy for Management
Parsing . 392

An Organizational Chart Tree Component 396
A More Traditional Organizational Chart

Component . 404
Inspecting Properties of an Entry 408
Connecting the Property Table and the Directory

Viewers . 415
Conclusion . 421

CHAPTER 13 SERVLETS AND LDAP. 423

Overview of Servlets . 423
Uses of LDAP in Servlets . 424
Designing the LDAP Servlet . 425

Location of Files . 426
Our Phone Book Servlet . 427

Phone Book Lookups. 427
Accessibility with a Simple Browser 427
Utilizing the Corporate LDAP Directory 428
Customizability . 428
Search Attributes . 428
Intranet and Extranet . 428
User Self-administration . 428
Connection Pooling and Data Caching. 429
Accessibility over SSL . 429
Connection-Pooling Class . 429
Servlet Request-Response Model 439

Setting Up and Using the Servlet . 484
Tips for Servlet Developers. 486
Conclusion . 486

Contents xi

PART IV BEYOND THE BASICS. 487

CHAPTER 14 OPTIONS AND CONSTRAINTS 489

How Do They Affect Me? . 489
A View into Options. 490

TimeLimit . 491
Referrals . 492
BindProc . 492
ReBindProc . 492
HopLimit . 492

Constraints for Searching . 493
ServerTimeLimit . 495
Dereference . 497
MaxResults. 497
BatchSize . 498
MaxBackLog . 498

Conclusion . 498

CHAPTER 15 ODDS AND ENDS . 499

LDAP URLs . 499
An IETF Standard . 499
Using LDAP URLs in Java. 501
Not Your Average URL . 502

A Rose by Any Other Name. . . . 503
When What You Read Is Not What You Wrote 505
Sometimes One Thread Is Not Enough . 507

Don’t Step on My Settings . 510
A Cloned Connection Is a Safe Connection 512

Performance, and How to Get It . 514
Breaking Up Is Hard to Do: Avoid

Unnecessary Connections . 514
Pool the Connections. 514
Fewer But Better Searches . 516
To Cache or Not to Cache . 516

Conclusion . 518

xii Contents

CHAPTER 16 ADVANCED TOPICS . 519

Information about Information: Managing the Schema 519
Programmatic Access through the Schema Classes. 519
A Pretty Printer for Schema Contents 524

Controls: An Essential Extension. 534
Too Much Data: A Virtual List View 535
Call Me When You’re Ready: Persistent Search 554
Password Expiration Notification. 557
Trust Me: The Proxied Authorization Control 559
Your Very Own Controls: Using the BER Package. 561

When the Data Lives Elsewhere: Managing Referrals. 572
Catching and Processing Referral Exceptions. 572
Automatic Referrals: Anonymous or under

Client Control . 573
The manageDsaIT Control . 575
LDAPBind for Complete Client Control. 575

And Now for Something Completely Different:
Extended Operations . 576

Aiming for 24×7: Failover and Reconnecting 579
Transparent Reconnection. 580

Controlling the Result Queue: The Connection Backlog 580
Down to the Wire: Using the Asynchronous Interface 581
Conclusion . 587

PART V APPENDICES . 589

APPENDIX A MORE TO LEARN ABOUT LDAP 591

Going to the Source: Internet Standards 591
Where to Get RFCs and Internet Drafts 591
LDAP RFCs . 592
LDAP Internet Drafts . 594
X.500 Documents . 598

Books about LDAP. 601
LDAP Concepts and Deployment 601
LDAP Programming . 601
X.500 . 601

Contents xiii

LDAP Information on the Internet. 602
LDAP FAQs and Presentations . 602
LDAP Client SDKs. 602
LDAP Server Vendors . 603
Add-On Products for LDAP Directories 603
Collections of LDAP Documents and Links 604
X.500 . 604
Miscellaneous . 604

Newsgroups Where LDAP Is Spoken. 605
LDAP in Your Inbox. 605
LDAP Servers at Your Disposal . 606

APPENDIX B CLASSES OF THE LDAP SDK . 607

The netscape.ldap Package . 607
LDAPConnection and Connection Management. 607
Basic LDAP Message and Data Encapsulation 612
Handling Messages from the Server 618
Authentication and Reauthentication 619
Exceptions . 620
Controls . 621
Caching . 626
Client-Side Sorting . 627
Schema Representation . 628
Miscellaneous Utility Classes . 631

The netscape.ldap.util Package . 633
DNs and RDNs . 633
LDIF Reader Classes . 634
Connection Pool . 637

APPENDIX C LDAP UTILITY CLASSES ON THE CD-ROM. 639

The table Package . 639
The util Package . 645

APPENDIX D COMMON LDAP SCHEMA ELEMENTS. 657

Object Classes. 657
Abstract Object Classes . 658

xiv Contents

Structural Object Classes. 658
Auxiliary Object Classes . 661

Attributes . 662
Attribute Syntaxes . 662
Attribute Types . 663

APPENDIX E LDAP ERROR CODES . 669

Index . 673

Contents xv

After a maturation phase in the early and mid-1990s, Lightweight Directory Access
Protocol (LDAP) exploded into the mainstream of enterprise and Internet soft-

ware environments. Just a few years ago, only researchers and a few brave souls doing
pilot projects concerned themselves with the new protocol for sharing and accessing
directory information. Today, one of the requirements of any major enterprise-level or
Internet-oriented application is to be able to use an existing shared resource for user
information, authentication, and authorization, and nowadays that resource in a
great many cases is an LDAP directory.

Why LDAP and Java?

The impetus for LDAP Programming with Java was the mushrooming need for accu-
rate, concise, and complete information on how to access this new key element of
enterprise and Internet programming—LDAP. Programmers around the world have
found innovative ways to use Directory SDK for Java to solve their LDAP access
problems, and sometimes they have shared their questions and experiences on the
newsgroups for LDAP, but there has been no authoritative guide.

This book is dedicated to the programmers and system administrators who are
faced with LDAP-enabling their applications, tools, and systems.

There are various programming language interfaces to LDAP: C, Perl,
Microsoft’s ADSI. Java and LDAP are a particularly good fit, with all the options
available today for deploying Java on servers—Java servlets, Java Server Pages (JSP),
Enterprise JavaBeans (EJB), and server-side JavaScript—and in clients as Java applica-
tions, applets, or client-side JavaScript. The Netscape Navigator Web browser
includes Directory SDK for Java, making it easy to deploy Web-based client applica-
tions that use LDAP to authenticate or to retrieve and store data.

xvii

Preface

In this book we’ve provided a very large number of examples for every aspect of
programming with Directory SDK for Java, from simple code snippets to more than
two dozen complete components and applications. You may be able to use some of
them as starting points for your own projects.

We do not discuss directory deployment scenarios or how to configure an LDAP
server. Such topics are explored in detail in other books and in documentation pro-
vided by vendors of LDAP servers.

To Get the Most Out of This Book

We’re assuming that readers of this book are somewhat familiar with programming in
Java, so we will not introduce or explain standard Java constructs. There are many
excellent books on Java programming in general, and on Java client-server program-
ming in particular. However, we will start at ground zero when it comes to directories
and LDAP.

How the Book Is Organized

Introduction to LDAP

Chapter 1 presents the role of directories in software systems today and describes how
applications can benefit from using them, as well as presenting cases in which directo-
ries are not as good a fit as relational databases.

Chapter 2 introduces the LDAP protocol against this background and presents
the LDAP naming and information models that together define how data is stored and
accessed in a directory.

After acquainting you with the basic LDAP concepts and terminology, in Chap-
ter 3 we will look at how Directory SDK for Java can help a Java program, servlet, or
applet gain access to an LDAP server. After installing the SDK, we will try a few sim-
ple searches with the SDK’s command-line search tool to become familiar with how a
client typically interacts with an LDAP server.

Getting Started

In Chapter 4 we will install an LDAP server for use in the remainder of the book. If you
already have a directory installed that is compatible with version 3 of the LDAP protocol
(LDAPv3), you need only add to the directory the sample database file that is provided
on the CD-ROM that accompanies the book. The examples in the book do not generally
assume any particular vendor’s directory product; exceptions are indicated clearly.

xviii Preface

With the SDK installed and a directory available, Chapter 5 dives into how to
retrieve data from an LDAP server. Searching is the predominant LDAP operation in
most programs, and we will cover all parameters that affect the results to be returned,
as well as how to obtain optimal performance.
Chapter 6 explores the add, modify, delete, and rename operations for updating data
in a directory, along with how to use groups.

Authentication is touched on briefly in Chapter 6 because most directories are
configured not to allow anonymous clients to update any data. Chapter 7, however,
covers the topic thoroughly. Besides covering simple authentication with a distin-
guished name (DN) and password, it introduces authentication with Secure Sockets
Layer (SSL) and Simple Authentication and Security Layer (SASL), and it explains
how access control is configured and updated in Netscape Directory Server.

Down and Dirty

Chapter 8 discusses the special considerations for LDAP client code that is intended to
run as an applet in a browser. The steps required to digitally sign an applet for use
with Microsoft Internet Explorer, Netscape Navigator, and the Sun Java Plug-in Soft-
ware are presented in detail.

In Chapter 9 we investigate how to access the SDK from JavaScript in a browser.
Chapter 10 demonstrates how to encapsulate LDAP functionality in a JavaBean

and provides full source for a directory tree browser JavaBean and a table JavaBean
for listing the results of a search operation.

In Chapter 11 we take a detailed look at how an application can store configura-
tion and preferences in a directory.

In a directory, data is stored as a tree. Chapter 12 illustrates how directory data
can model relationships other than the physical tree relationships. A JavaBean is
developed to extract reporting relationships from LDAP data and present the results
as an organizational chart. Another JavaBean presents the contents of a directory
entry. The chapter concludes by hooking up into simple applications the graphical
JavaBeans that have been developed up to that point in the book.

Chapter 13 develops a complete server-side application: a corporate online “phone
book.” The application is a Java servlet that makes selected personal directory informa-
tion, such as phone numbers and photographs, available to any user with a browser.

In Chapter 14 we summarize and discuss all the options and constraints that
may be selected by an application for searching and other operations.

Beyond the Basics

Chapter 15 discusses various aspects of the SDK and of LDAP programming in
general that are not discussed as often as the other topics in this book, such as

Preface xix

LDAP URLs, the use of multiple threads and multiple connections, and perfor-
mance tips.

Advanced topics, such as schema management, LDAP controls, and the asyn-
chronous operation methods, are presented in Chapter 16.

The appendices contain important reference material for the SDK and for LDAP
in general.

If You’re in a Hurry

In general, the book contains a logical progression of information and examples, each
chapter building on previous ones.

If you are familiar with the use of directories and with LDAP concepts, you may
choose to skip over the first two chapters. If you already have an LDAP server avail-
able and the SDK is installed, you can go directly to Chapter 5.

If you are not interested in writing applets or JavaScript applications that use
LDAP, you can safely skip over Chapters 8 and 9. Similarly, if you do not need to
know how to write a Java servlet that uses LDAP, you may choose to skip over Chap-
ter 13.

The Companion CD-ROM

The CD-ROM includes reference documentation and source code for Directory SDK
for Java, as well as for all the examples and programs mentioned in the book. The
SDK and examples are also provided as precompiled class and JAR files so that you
can run any program directly, without compiling or copying to a local hard disk. The
full text of the book is also included, to allow you to view the contents in a browser
and to search for any word.

xx Preface

Susan Walton, then of Netscape Publishing, helped us understand what is involved
in writing and publishing a book. Netscape/AOL generously agreed to let us share

with you the experience we gained in using the SDK in Netscape products during the
past two years. Karen Gettman and Mary Hart at Addison-Wesley took on the project
enthusiastically and helped make a book out of our scribbling. Stephanie Hiebert’s
diligent copyediting gave consistency to the formatting and prose of the book and
made it easier to read in the process.

The book would not have been as complete and technically accurate without the
contributions of many reviewers, including Megan Alexander, Jim Sermersheim,
Gabor Liptak, Vasanthan S. Dasan, Bob Kitzberger, Atma Sutjianto, Mark Wilcox,
Luke Howard, and Ellen Stokes.

We would also like to thank the many adopters of LDAP with whom we have
had the good fortune of interacting. Their inquiries and need for information have
helped form the content of this book and many of the programming examples.

Rob would have succumbed to a combination of exhaustion, dehydration, and
starvation within the first few weeks of working on this book without the constant
attention and support of loving wife Helena.

Tony thanks his parents, Anton and Bonnie, for supporting his very early love of
computers at a time when no one knew what this “thing” could do. His wife, Tracy,
made Tony’s contributions possible by assuming all the responsibilities of the house-
hold, including two young children, and providing her support during the authoring
of the book.

xxi

Acknowledgments

P A R T I

INTRODUCTION

C H A P T E R 1 What Can You Find
in a Directory?

C H A P T E R 2 The Lingua Franca
of Directories
Is LDAP

C H A P T E R 3 May We Introduce—
Directory SDK
for Java

In many ways, developing software applications has become orders of magnitude
more demanding in the past 15 years, especially when the target environment is a

desktop computer. In 1985, applications were generally small, had a single purpose,
had a command-line interface, and typically did not interact with each other. In the
PC environment, sneakernet was the dominant means of distributing programs and
program output: you copied the data to a floppy and carried it over to another PC if
the data was needed there.

Today millions of computers are connected to each other. Companies have inter-
nal networks that permanently connect company computers with each other and that
periodically connect computers with servers all over the world. Programs can be
downloaded and data shared instantly between users at opposite ends of the earth.

Today users have different expectations for applications. Users expect applica-
tions to interoperate; they expect different applications to share inputs, outputs, and
to some extent, configuration information. For example, users expect applications to
“remember” configuration information and preferences, no matter where the applica-
tions are used. When you read e-mail, browse the Web, and use other applications,
you want the same preferences set, regardless of whether you are at home or at work.

Users expect different applications to share login information. They don’t want
to remember a dozen passwords, and they don’t want to log into another application
every few seconds. Many companies deploy large numbers of Web-based applications
for internal use on company intranets or for customers on the Internet, and it would
not be acceptable to require the user to identify herself every time she jumped between
Web pages and Web-based applications.

Although there are greater demands on applications today, there are also much
greater possibilities. If applications are integrated, they can simplify work for a user.
Users don’t need to enter redundant information or make the same changes to prefer-
ences for different applications.

What Can You
Find in a
Directory?

3

C H A P T E R 1

But how can different applications share information about users? How can
applications keep track of user-specific settings in a common location, regardless of
which computer the user is using? One possible solution is a directory that stores user
information.

What Is a Directory?

A directory is a service that allows you to search a structured repository of informa-
tion. Although that may sound like a database (a directory generally does contain or
interact with a database internally), a directory is defined by how users interact with it:
through its protocol and its application program interface (API). Most directories offer
a hierarchical rather than a relational view of the data. Figure 1-1 gives one example of
how information about a person is stored in a directory. As this example shows, all
attributes of a particular person are stored as a single object, and in this case all objects
that represent people are grouped under a single location in the hierarchy. The struc-
ture of the tree defines the basic relationships between objects. Attributes have stan-
dardized names, such as cn for “common name” and sn for “surname.”

Figure 1-2 shows how information about people typically is stored in a relational
database. In this example, user information is stored in one table, and organizational
unit information in another. A third table contains organizational information. A
column in the user table maps users to organizations. To retrieve all information for a
particular person, a query does a join on these tables.

4 What Can You Find in a Directory?

cn: Jim Daniels
sn: Daniels
givenName: Jim
employeeNumber: 12345
uid: jdaniels
mail: jdaniels@airius.com
telephoneNumber: +1 408 555 5625
roomNumber: 3472

cn: Sam Carter
sn: Carter
givenName: Sam
employeeNumber: 12346
uid: scarter
mail: scarter@airius.com
telephoneNumber: +1 408 555 4798
roomNumber: 4612

cn: Ted Morris
sn: Morris
givenName: Ted
employeeNumber: 12347
uid: tmorris
mail: tmorris@airius.com
telephoneNumber: +1 408 555 9187
roomNumber: 4117

ou: People

o: Airius.com

ou: Groups

cn: Accounting Managers
uniqueMember: uid=scarter, ou=People, o=airius.com
uniqueMember: uid=tmorris, ou=People, o=airius.com
description: People who can manage accounting entries

FIGURE 1-1. How data is organized in a directory.

In addition, directories tend to be used in a context in which data is retrieved
more frequently than it is updated. In general, directories are not designed to store
very large objects, but they are designed to store very large numbers of objects.

The following list identifies some of the main differences between a directory
and a relational database:

• Directories are generally intended for environments in which one or more
clients are doing many times more read or search operations than write
operations. As a consequence, relational databases tend to perform better
than directories when data is being updated more frequently.

• Directories usually do not support the advanced relational queries (with
table joins) of a relational database. For example, a directory can efficiently
tell you all the employees of a company whose manager is Jim Johnson, and
it can tell you all the managers who are located in Savannah, but it cannot
easily tell you all the employees whose managers are located in Savannah.

What Is a Directory? 5

User table

ID EMP. NR. FULL NAME LAST FIRST uid PHONE E-MAIL ou

1 12345 Jim Daniels Daniels Jim jdaniels +1 408 555 5625 jdaniels@Airius.com 1

2 12346 Sam Carter Carter Sam scarter +1 408 555 4798 scarter@Airius.com 1

3 12347 Ted Morris Morris Ted tmorris +1 408 555 9187 tmorris@Airius.com 1

Organizational Unit table

ID NAME ORGANIZATION

1 People 1

2 Groups 1

3 Accounting 2

Organization table

ID NAME

1 Airius.com

2 acme.com

FIGURE 1-2. How data is organized in a relational database.

• Directories do not support transactional integrity across multiple operations.
There is no way to ensure that several operations either all succeed or all fail.

• On the other hand, directories have better and more flexible support for
substring searches and for searches for approximate matches.

• Whereas directories ship with preconfigured schemas (which are often
standardized among vendors) that are sufficient or require few enhance-
ments to support applications, relational databases generally require
schemas to be defined before anything else can be done. The schema defines
which attributes may be used in the directory and which attributes are
required or allowed in a particular entry.

• Directories tend to be more often and widely replicated (for performance
and for redundancy) than relational databases.

• Directory protocols (such as Lightweight Directory Access Protocol, or
LDAP) are better suited for wide-area network use, such as on the Internet
or on large corporate networks.

• Directories are usually much simpler to configure, tune, and manage than
industrial-quality relational databases, and they are much less expensive.
Both the cost of acquisition and the cost of ownership are therefore consid-
erably lower.

What’s That Phone Number?

One of the first major uses for general-purpose directories was to replace the company
phone book. These listings of employees and their phone numbers are frequently
reprinted but chronically out-of-date. Maintaining a useful printed listing is a non-
trivial task in a large company, where people frequently come and go, change loca-
tions, and change job titles. The manual labor involved in compiling the listing,
printing copies, and distributing the list to hundreds or thousands of employees is
considerable. In fact, by the time the listing is available, it may already be out-of-date!

Now let’s see how this setup might be replaced with an online directory. We
assume that all employees have access to a computer that is on a company network.

First we’ll install a directory and add all the current employee names and phone
numbers. Most directories come with some kind of client software that allows users to
search, view, and update directory information. Once all employees have a copy of
that software, they can use the directory to look up any phone number instantly. If the
directory is configured to allow users to update their own information, a user can cor-
rect typos or provide new information without the assistance of any Information Sys-
tems or Human Resources personnel.

6 What Can You Find in a Directory?

When an employee is hired, Human Resources adds the information about the
employee to the directory, and all employees in the company instantly have that infor-
mation at their fingertips. Similarly, when an employee leaves or changes location, a
simple change to the directory can make the updated information available
everywhere.

Beyond this basic model, a directory could be integrated with the direct sources
of user information. For example, the phone branch exchange (PBX) is the most cur-
rent and the most authoritative source of telephone number information in a com-
pany. If an employee does not have a phone number registered in the PBX, that
employee cannot be contacted by phone. A mechanism could be introduced to syn-
chronize employee names and phone numbers between the PBX and the directory. A
synchronization service to handle this task could be a simple offline script or program
that runs frequently or infrequently, collecting changes in the PBX and propagating
them to the directory, or it could be a more tightly coupled process that immediately
passes on any change. At this point, the directory is self-maintained (as far as
employee names and phone numbers go): no one needs to update the directory manu-
ally to keep the listings up-to-date.

Directory Clients for an Online Phone Book

Netscape Directory Server is an example of a Lightweight Directory Access Protocol
(LDAP) directory service. Using Netscape Directory Server, you can set up your own
directory of employee phone numbers. Chapter 4 explains how to download, install,
and configure this server.

Netscape Directory Server provides two simple but useful types of clients: a set
of command-line tools and a Web-based interface to the directory. Netscape also pro-
vides two SDKs for building your own directory clients: one for Java and one for
C/C++/Visual Basic.

The set of command-line tools includes ldapsearch, a tool for searching the
directory. If you’ve installed Netscape Directory Server, these tools are located in the
shared/bin directory under the installation root directory.

The following example is a command for searching the directory for information
on an employee named Ted Morris.

ldapsearch -h directory.acme.com -b "o=Airius.com" "cn=Ted Morris"

telephoneNumber

The example is set up to work against the Airius.com sample directory on a
machine named directory.acme.com. We’ll take a closer look at the syntax for this
command in Chapter 5.

Directory Clients for an Online Phone Book 7

You can use this command-line tool as a building block for your own simpler,
user-friendly scripts. The cn portion of the syntax shown here identifies the first and
last name of the employee you want to find. You can write a shell script (UNIX) or
batch file (Windows) to allow users to enter all or part of an employee’s name. For
example,

phone.bat (Windows)

ldapsearch -h directory.acme.com -b "o=Airius.com" "cn=*%1*"

telephoneNumber

phone.sh (UNIX)

ldapsearch -h directory.acme.com -b "o=Airius.com" "cn=*$1*"

telephoneNumber

In these scripts, the first argument is passed to the ldapsearch command-line
tool as the name of the employee to find. You can then type

phone Morris

and get back

dn: uid=tmorris, ou=People, o=Airius.com

telephoneNumber: +1 408 555 9187

The other client application provided is a Web-based interface to the directory.
The interface is called an LDAP gateway (a gateway to LDAP directory services) and
is a collection of Common Gateway Interface (CGI) programs and HTML templates
installed on a Web server. Since this is a Web-based interface, you do not need to
install or configure any additional client software on the employees’ computers.
Employees just need to point a Web browser to the right URL.

Netscape Directory Server includes two sets of templates for the gateway: one
for end users and one for administrators. Directory Express consists of a set of tem-
plates to allow end users to search for employee information. Directory Server Gate-
way, the other set of templates, is intended for more general-purpose directory
searches and updates—for example, by administrators. You can get to both gateways
by pointing your browser to the URL of the administration server for the directory
server—in other words, http://<directory_server>:<admin_server_port> (for
example, http://directory.acme.com:17200). Figure 1-3 illustrates the administra-
tion server home page. The gateways may also be installed on any Web server.

In Directory Express (Figure 1-4) and Directory Server Gateway, many parame-
ters are already defined in a template and do not need to be specified for each search,
including the host name and port number of the directory server, the directory entry

8 What Can You Find in a Directory?

from which to search (the starting point of the search), and the search scope (which is
always subtree scope). You just enter part of a name to search for. These parameters
are described in more detail in Chapter 5.

You can also update some of the information with Directory Express, as Figure
1-5 shows.

Directory Server Gateway (Figure 1-6) offers a more complete view of the infor-
mation.

Directory Clients for an Online Phone Book 9

FIGURE 1-3. Netscape Administration Server home page.

Though relatively simple, these are applications that many companies find useful
out of the box. If these applications do not meet your needs, you can purchase com-
mercial software for more sophisticated access, or you can write your own client soft-
ware. This book will explain how to use Directory SDK for Java to write your own
directory clients.

Is He Really Who He Says He Is?

Another very common use for directories is authentication.
Suppose you wrote a Web application for betting on college basketball scores. This

application is intended to be used (officially, of course) as a company team-building

10 What Can You Find in a Directory?

FIGURE 1-4. Directory Express search page.

exercise. To ensure that each player is responsible for his or her bets (and is not mak-
ing bets for someone else), you set up a small database of users and passwords. When
the user directs a browser to the betting home page, the user is prompted to enter a
user name and password.

At first, this system works just fine. But the idea becomes quite popular, and a
colleague, Jim, decides to publish another Web application on his own Web server.
This application takes bets on the number of irate customer phone calls that will be
received by the Customer Support Department during the coming week. Jim sets up
his own database, and all players must register a new user name and password. The
players must be sure to use the right user names and passwords for this application
when they enter the application’s home page.

Is He Really Who He Says He Is? 11

FIGURE 1-5. Directory Express update page.

In the meantime, the mail server that distributes e-mail to all employees has its
own database of users and passwords, and the company Web application for ordering
office supplies has another database.

At this point, things are getting messy: there are four different databases with
different user names and passwords. Employees need to memorize all these names and
passwords, and they need to remember when to use which password for which appli-
cation. Beyond this simple example, some companies deploy dozens or even hundreds
of Web applications in which it is important to make sure users are who they say they
are and to keep track of who the current user is. These applications may be running
on Web servers on dozens or hundreds of different machines. Users may even have to

12 What Can You Find in a Directory?

FIGURE 1-6. Directory Server Gateway search page.

log into machines on extranets and the Internet. As more applications and computers
come into the picture, it becomes even more essential to centralize and simplify user
authentication.

Directories are excellent at supplying the required functionality. With a directory
service, you simply connect to the central directory from any machine and any appli-
cation. You provide a user name and password to authenticate, and you receive an
instantaneous response.

As an example of authenticating to the directory, you can use the ldapsearch
command-line tool. It is unlikely you will have a program that just authenticates to a
directory and does nothing else, but you can use ldapsearch to demonstrate authenti-
cation. After connecting to the directory server, ldapsearch attempts to authenticate
using the distinguished name (DN) and password you’ve provided. Distinguished
names identify users in the directory, as will be explained in more detail in Chapter 2.
If authentication fails, ldapsearch reports the error and does not search the directory.
For example,

ldapsearch -D "uid=tmorris, ou=People, o=Airius.com" -w "irrefutable"

-b "" -s base “objectclass=*" dn

dn:

The authentication was successful, so ldapsearch went on to read the contents
of the "" (root) entry and print out its DN (which is "").

ldapsearch -D "uid=tmorris, ou=People, o=Airius.com" -w

"wrongpassword" -b "" -s base “objectclass=*" dn

ldap_bind: No such object

Now the authentication failed, so ldapsearch printed a message indicating a
failure to “bind” (authenticating in LDAP is called binding) and did not do a search.

A real authentication application would interpret the results and report them in
a more user-friendly way. This example just demonstrates how easy it is to validate
credentials using a directory.

A common scenario for using a directory service is to set up a central directory
for authentication. In this scenario, the directory is used to store user names and pass-
words for many different Web applications, as well as other services not based on the
Web (such as a mail server). You can run new Web applications on any Web server on
the network and still leverage the user information in the directory.

There are even large-scale applications in which the only purpose of the direc-
tory is to provide user authentication.

An extension of this use is single sign-on. In a single sign-on solution, a user
needs to enter a password only once. After entering the password, the user is not
prompted for a password again, even when starting a new application.

Is He Really Who He Says He Is? 13

Directories are considered central to the success of a public-key authentication
and encryption solution; there is no other realistic way to publish or manage a large
number of certificates. For example, suppose you want to use another user’s public
key to encrypt an e-mail message to that user. With a directory, client e-mail software
can automatically look up the public-key certificate of the e-mail recipient and use the
key to encrypt a message. If certificates need to be revoked or replaced, you can just
execute those operations in the directory.

Working Together

Why should the employee information in the directory be limited to phone numbers,
user names, and passwords? A natural extension of the phone book and authentica-
tion engine concepts is to use the directory as a central access point for application
information (such as user preferences), as opposed to just the information that users
want to see.

Consider a situation in which a new employee arrives at a large company. The
employee fills out various forms with all her name, address, and other information,
and a member of the Human Resources (HR) Department types the information into
the HR database.

One of the forms that the new employee filled out goes to the Information Sys-
tems (IS) Department. Someone in IS reads the form and extracts information to cre-
ate a UNIX computer account for the new employee. The user’s full name is recorded,
a user name is assigned, and a temporary password is put in place.

Since the company has a mix of computer types on its network, the form is sent
along to the Windows specialist in IS, who then creates a Windows account on an NT
server for the new employee. If all goes well, the same full name, user name, and pass-
word are assigned as for the UNIX account.

Another form goes to the postmaster in IS to set up an e-mail account. Again, the
hope is that the same full name, username, and password will be assigned, and that no
typos will be made.

Finally, a form goes to the Webmaster for the intranet, who types in the same infor-
mation to provide the employee with access to the online benefits enrollment program.

In this scenario there is a lot of duplicated data entry, and there is plenty of room
for mistakes. If the employee decides to change her name, the changes need to be
made in each of the databases (with the possibility in each case that typos will be
introduced). If an employee resigns, records must be purged and accounts deleted in
all these data stores. How can the problem of duplicate work be solved?

It’s the directory to the rescue! For political and other reasons, Human
Resources may not want to move all employee information from its minicomputer
relational database into a directory. Some of the information, for instance, is not rele-

14 What Can You Find in a Directory?

vant to other departments or applications (for example, salary history, vacations, ben-
efit allocations). But there is a core of clearly shareable data, including the employee’s
name, social security number, address, department, manager, main file server, home
phone number, user name, password, and so on. “Shareable” does not necessarily
mean editable or even viewable by anyone; a fine-grained access control may deter-
mine what information is available to each potential application or user.

But how is the information made shareable through the directory? The problem
can be divided into two parts: getting the information into the directory, and allowing
applications to retrieve information from the directory (once the information is there).

Since Human Resources maintains a sizable database of personnel information
in its own system, you need to set up a synchronization mechanism to update the
directory with relevant changes made in the HR database. These types of mechanisms
have been implemented as ad hoc tools (using Perl scripts and C programs) by IS
departments in many companies. Typically, these programs check the HR database

Working Together 15

Netscape’s implementation of the single sign-on solution uses digital certificates.
In this solution, digital certificates that identify each user are stored in the user’s

entry in the directory. Digital certificates are discussed in detail in Chapters 7 and 8.
The user’s client software (in this example, Netscape Communicator) keeps a

local database of the private keys for the user. These keys have corresponding public
keys and digital certificates that “certify” that the public-private key pairs belong to
the user. This local database is password protected. When the user first attempts to
access any server that requires certificate-based authentication, Communicator
prompts the user for the password to access the private-key database. Communicator
does this only once per session, even if the user needs to authenticate to other
servers.

Communicator uses the private key to sign a piece of data as proof of the user’s
identity. Communicator sends the signed data and the user’s certificate to the server.
The server can look up the user’s entry in the directory and can verify that the certifi-
cate presented by the client is identical to the certificate in the directory.

In this solution, the user needs to enter a password only once. During subse-
quent requests for authentication, Netscape Communicator sends signed data and
the user’s certificate without prompting the user for a password. Applications that
require authentication can use the directory to look up the user’s certificate and ver-
ify the user’s identity.

For more information on Netscape’s single sign-on solution, see the Single
Sign-On Deployment Guide at Netscape’s DevEdge Web site: http://developer.
netscape.com/docs/manuals/security/SSO/index.htm.

for changes on a periodic basis. The programs dump recent changes into a text file,
process the file to produce a format suitable for import to a directory, and then import
the results into the directory. Some full-scale metadirectory products are designed for
this purpose as well.

Once employee information is in the directory, however, how does this informa-
tion get to the UNIX user database (NIS or NIS+, for example), the NT server, the
mail server, and the Web-based benefits enrollment program?

In the case of the mail server and the benefits enrollment program, we’re in luck.
Recent versions of mail servers and Web servers can be configured so that they get
their information from a directory.

For the UNIX user database and the NT server, another synchronization mecha-
nism is required. Some directories already include these mechanisms, and many IS
departments write their own solutions. And here, too, a commercial metadirectory
can provide the required functionality.

Computers, Printers, Toasters . . .

There is no intrinsic limit to the type of data you can store in a directory. So far, we’ve
discussed only information about people. But you may want to store information
about shared resources on a network, such as file servers or printers. Then developers
could write applications to search for appropriate resources and take action based on
the properties of the resources. For example, you can write a utility to search for a
particular printer on the company network. You might want to find the closest printer
to your department that does dye sublimation full-color glossies. Once the application
finds the directory entry for the printer, the application can read the printer properties
from the directory and dispatch an appropriately configured print job.

Configuration information for applications can also be stored in a directory. A
rapidly increasing number of people access their e-mail from more than one place—
from home, from work, or while on the road. Traditionally, e-mail programs have
stored configuration information (such as the mail server name, the user name, the
password, and mailbox names) either in a file or in the Windows registry. Some con-
figuration information (for example, indexes of mailbox contents) is updated auto-
matically and silently by programs whenever they run.

Keeping the configuration in synch among multiple computers is difficult or
impossible. This is even more true of Web browser bookmarks. Recent versions of e-
mail and browser programs (for example, Netscape Communicator) offer a solution
to this problem: an option to store all this configuration in a directory on the Internet.
No matter what computer you use, no matter where you connect from, no matter
whether the computer is running Linux or Windows or Mac OS, the program will
always get its configuration from the same place—a central directory.

16 What Can You Find in a Directory?

Even programs can be stored in a directory. Remember that directories are gen-
erally not designed to handle very large objects, but small Java classes should not be a
problem. The opportunities for creating radically dynamic applications are mind-
blowing. Customizable applications that assemble themselves and configure their lan-
guage, user interface, and component set on the fly from classes stored in the directory
to match the needs of a particular user? Not unrealistic at all. Jini—the framework for
Java object lookup and collaboration—and directories make very good partners.
What better catalog for Jini object lookups than a directory?

Computers, Printers, Toasters . . . 17

Jini allows Java objects to locate each other and exploit each other’s services over a
network. When a Jini-enabled device is connected to a network, it looks for a cat-

alog service and registers itself. If a Jini-enabled object needs a particular service, it
can find a catalog service and enumerate the objects that are registered to find one
that suits its purposes. The object may also register for notification when new objects
are registered in the catalog. If it finds an appropriate catalog entry, the object can
then download and run the object that the catalog entry represents (or a stub inter-
face).

For example, a word-processing application might need to list available print-
ers when the user selects the print menu option. The application can then present a
list of printer objects found in a nearby (in the network sense) catalog. The user
selects a printer and the application downloads the printer object and runs it. There
is no need to contact the printer vendor or the operating system vendor to obtain an
up-to-date driver for the printer because the “driver”—the printer Java object—
comes with the printer itself and is always the right one for that particular printer.
Read more about Jini at http://www.sun.com/jini/.

LDAP is not the first protocol to provide directory services over a network. This
chapter will briefly outline the predecessors to LDAP, as well as other technologies

that provide similar services today. The chapter will also introduce some basic con-
cepts in LDAP, including the information and naming models. Finally, the chapter will
summarize the state of LDAP today and the software development kits for LDAP that
are currently available.

A Brief History of Electronic Directories

I Heard It through the Grapevine

The first widely distributed directory service for sharing user account information
among many networked computers was the Xerox Clearinghouse. The Clearinghouse
was based on research done around the distributed computing system called
Grapevine at Xerox’s Palo Alto Research Center in the early 1980s. The Grapevine
provided message delivery, resource location, authentication, and access control ser-
vices in a network of networks (an internet). When completed, it extended across both
coasts of the United States and to Canada and England. More than 1,500 computers
participated in the more than 50 local networks that were linked by Grapevine. The
Grapevine Registration Database was the precursor to the Clearinghouse.

Registration Database contained about fifteen hundred individuals and five hun-
dred groups. The total message traffic was about twenty-five hundred messages per
day. The five computers that hosted Registration Database and Message Server each
had 128K of memory and 5MB of disk storage.

The Clearinghouse allowed a user with a Xerox Network Systems (XNS) account
to log into the network from any Xerox workstation anyplace in the world. No matter

The Lingua
Franca of
Directories Is
LDAP

19

C H A P T E R 2

which workstation was used, users always saw their personal desktops. This idea was
revolutionary at the time; in some ways, the rest of the networking world is just begin-
ning to catch up with this radical concept.

In recent years, the World Wide Web and the general availability of thin clients
(Web browsers) has made a subset of this portable desktop functionality accessible to
the general public. From any workstation, users can check their e-mail messages
(using Web-based e-mail), access their bookmarks and personal preferences for Web
browsers (with location-independent browsers), and view the latest news and infor-
mation tailored for their particular interests (through the personalized Web pages
offered by many portal sites).

Although it was a pioneer in directory services, the Clearinghouse remained a
proprietary invention with a proprietary protocol, and as a result it was never
adopted outside of Xerox-supplied networks.

Directories for the Internet

The introduction of the Internet, along with the availability of a powerful operating sys-
tem with university access to source code—UNIX—gave rise to numerous projects, each
of which resulted in a limited, special-purpose form of networked directory service.

One of these services was the Domain Name System (DNS), which translates a
“plain English” computer name, such as myserver.acme.com, into an IP address, such
as “207.200.75.200.” When you work with a software application, you may find it eas-
ier to remember computers by their names. The software applications, however, need to
use the IP addresses in order to find a route through the network to the computer.

For example, it’s much easier to remember a Web site by the name www.
netscape.com than by the IP address “205.188.247.5.” But the Web browser needs
the IP address to find and connect to the Web site. When you type www.netscape.com
in your browser’s location text field, the browser makes a system call, which uses the
DNS protocol to contact a DNS server and ask for the corresponding IP address. If
the server doesn’t have the address, it can look up the name of a server that does have
the address and can contact that server to get the address. The DNS can be considered
one of the earliest wide-area directory services (DNS has been available since 1984),
although it has a very limited and specialized functionality.

Other early Internet directory services with limited functionality include whois
(a database of domain name registrations) and PH (user information lookup servers).
These services are still available today.

Directories for a Single Network: Proprietary Solutions

NIS and NIS+

Sun Microsystems developed the Network Information System (NIS), later extended
under the name NIS+ to allow hierarchical naming schemes and to share within a net-

20 The Lingua Franca of Directories Is LDAP

work the mappings between host names and IP addresses (like DNS), as well as user
account information. Although NIS and NIS+ could be used for more than this, these
are the most common uses. Nowadays NIS is ubiquitous on UNIX systems, and it
allows a user to log into a network from any machine that shares the same NIS user
database. However, although NIS and NIS+ will continue to be supported on UNIX
systems, the current trend is to use LDAP to provide these directory functions.

NDS

In 1993, Novell replaced its limited user and network database—the Bindery—with a
sophisticated, scalable, and hierarchical service capable of managing arbitrary infor-
mation: Novell Directory Services (NDS). Although NDS initially was available only
with the NetWare operating system, Novell has aggressively licensed the source code
to various UNIX vendors, attempting to make it a de facto standard.

The information and naming models of NDS are very close to those of X.500
(which we’ll discuss shortly), but the access protocol is proprietary. In 1997, Novell
made available an LDAP gateway to allow LDAP clients to access NDS.

However, the same Internet standards pressure that has pushed Novell to pro-
vide native TCP/IP support in its products (instead of its proprietary network protocol
IPX) has also influenced Novell’s directory strategy. Currently, Novell is rewriting
NDS to be a native LDAP server, with extensions to support Novell-specific features.

Active Directory

Before Windows 2000, Microsoft provided only a very simple, flat user information
system for networks, based on domains (not to be confused with a DNS domain).
The system is not scalable and requires complicated “trust relationships” between
domains to span a large company. The system is to be replaced with the advent of Win-
dows 2000 by a modern, LDAP-based directory: Active Directory. Although intended
primarily for management of Microsoft networks, Active Directory should be usable
for general-purpose services, assuming that full access is provided to LDAP clients.

X.500: The “Heavyweight” Directory Service

The rapid expansion of distributed systems and telecommunications networks
spurred the quest for a standardized, wide-area directory service. The International
Telecommunication Union (ITU, formerly the CCITT) joined forces with the Interna-
tional Organization for Standardization (ISO) to develop a series of specifications for
a directory service that could provide telephone numbers and e-mail addresses and
manage information about network objects. This service was intended to be vastly
scalable and extensible.

In 1988, the first standards document for this service was produced. The stan-
dard was called X.500. In 1990, this standard was published under the name “ISO

A Brief History of Electronic Directories 21

9594, Data Communications Network Directory, Recommendations X.500-X.521.”
In spite of this new name, the name X.500 stuck. Today the standard comprises many
documents (in the X.5 series) and is still in development.

A free implementation of X.500 (called Quipu) was developed at the University
College of London. Today there are a few commercial implementations, including ver-
sions from ISOCOR, Datacraft, and Control Data.

The authors of the X.500 specifications were careful to design a protocol that
would handle any directory needs, both in the present and in the future. Some of this
work has resulted in a naming model that was adopted by both NDS and LDAP, and
an information model that has been maintained in LDAP. Later in this chapter we will
look at both of these models in more detail.

From Humble Beginnings

Early Goals of LDAP

Developing client applications to communicate with an X.500 server turned out to be
very complex. The number of options and variants to protocol operations, along with
the need to run on an OSI (Open System Interconnection) protocol stack (as opposed
to the ubiquitous TCP/IP of the Internet), stood in the way of widespread adoption.
Since most clients run in a TCP/IP network environment and need only a very small
subset of these options, work began on a lightweight client access protocol. The work
was successful: all current commercial X.500 servers now come with an LDAP gate-
way (Figure 2-1), a program that translates between the lightweight, TCP/IP-based
client protocol and the native X.500 protocol of the server.

Early Work on LDAP

In 1993 the work on providing lightweight client access to X.500 servers resulted in
the publication of RFC 1487, “ X.500 Lightweight Access.” Version 1 of the protocol

22 The Lingua Franca of Directories Is LDAP

LDAP client LDAP gateway X.500 server
LDAP

TCP/IP

X.500

OSI

FIGURE 2-1. LDAP as a gateway to X.500.

didn’t take off, but version 2 did. In 1995, LDAPv2 was defined in RFC 1777, “Light-
weight Directory Access Protocol.” Most of the early implementations of LDAP client
libraries and gateways trace their lineage to freely available software from the Univer-
sity of Michigan. In many of these implementations, a client would use an LDAP
client library to talk to an LDAP gateway, which would translate the protocol requests
and pass them on to an X.500 server.

LDAP Simplifications of X.500

We’ve already mentioned that LDAP uses TCP/IP (although it could be made to run
on other network protocols) and does not require OSI.

The encoding of requests and responses also was significantly simplified. X.500
allows the data stream of requests and responses to be encoded in many different
ways, all of which are variants of the Basic Encoding Rules (BER) specification of
Abstract Syntax Notation One (ASN.1). Although ASN.1 is a very powerful and
expressive syntax, it requires the client to be capable of interpreting the data types in
many different encodings. In LDAP, only a small subset of BER is used and required,
and most data types are transmitted as strings. As a result, LDAP clients do not need
to handle the multitude of other encodings and data types required by X.500.

The authors of LDAP defined an API for accessing the protocol and assembled
an SDK for applications developers. X.500 lacked a standard client API, which forced
client application developers to write most of the code for using the protocol.

Initially the LDAP specifications omitted definitions for data replication, refer-
rals (situations in which a server without the requested information can redirect a
client to another server that has the information), access control, chaining (situations
in which a server without the requested information contacts another server on behalf
of a client), and many other standard X.500 features. Some of these features have
been added to the LDAP specifications in version 3 or are currently under discussion
as proposed additions. Other features have been implemented in software from the
University of Michigan or from other vendors but have not been standardized.

Another critical difference between X.500 and LDAP is in the understanding of
how directories can be combined to form a single globally searchable service. The
X.500 developers envisioned a partition of all directory space in the world on a coun-
try basis. At the root of the tree in each directory is a null entry that cannot be
searched and that has no user attributes. It represents a virtual shared root of all direc-
tories. Under the null node, the directory contains one or more country nodes. Under
the country nodes, there are organization nodes, which correspond to companies.

Each company node can contain any structure appropriate to the company. Typ-
ically this structure consists of a tree of organizational unit nodes, each corresponding
to departments or divisions of the company. If a request for company information is
directed to a particular X.500 server, the server can quickly determine that the

A Brief History of Electronic Directories 23

requested information is in a different country tree. The X.500 server can pass the
request on to a server for that country, which can then pass it on to a server that holds
information for the company requested.

In reality, it is not feasible to build a global, top-down network of directories in
this way, both for practical and for political reasons. It is not even practical to use
country nodes at the top of the tree of a company directory, since many companies
have operations in more than one country.

LDAP imposes no such restrictions. With LDAP, you can build directories from
the bottom up to meet the actual needs of an organization. You can then make the dif-
ferent organizations appear as a single unified organization by setting up referrals
between the directories.

LDAP as a Complete System

By the time the second LDAP RFC was out in 1995, almost all access to X.500 servers
went through the intermediary of LDAP gateways, rather than directly from native
X.500 clients. The question then was: If all the clients want is the subset of X.500 rep-
resented by LDAP, why even build servers to implement X.500?

Many of the developers of the LDAP protocol now turned their attention to the
prospect of a “lightweight” server. They discovered that a native LDAP directory
server could be designed and implemented at a much lower cost than an X.500 server
could. In addition, an LDAP server eliminated the need for gateways and translators.
By the end of 1995, the first native LDAP directory server was made available for free
(including the source code) by the University of Michigan.

The main developers who created this server brought their work to Netscape
Communications, which released a commercial version of the directory server at the
end of 1996. This server was derived from the University of Michigan source code.

Interest in and deployment of LDAP began to snowball. Although this activity
was beneficial for the protocol, the newfound attention began to identify important
omissions in the specifications and functionality of LDAP. Work began in the inter-
national LDAP community to specify a new version of the protocol: LDAPv3. The
new version would fill the previous gaps in the protocol, add important functionality,
and provide mechanisms to extend the functionality further without changing the
protocol or the existing API. RFC 2251 is the document that contains the new pro-
posed standard. Appendix A includes a list of current and proposed LDAP standards
documents.

Future Directions for LDAP

The following are the main areas in which extensions to LDAP are being discussed
within the Internet Engineering Task Force (IETF):

24 The Lingua Franca of Directories Is LDAP

• Authentication and privacy. The only standardized authentication means
in LDAP as of mid-1999 is simple authentication, which requires the client
to pass a distinguished name (DN) and a password to the server in clear-
text. Discussion is under way on another mandatory authentication
method that makes use of a digest, eliminating the need to pass cleartext
passwords over a network. Most current LDAP servers support use of the
Secure Sockets Layer (SSL) for encrypting a session, typically through use
of a dedicated port to ensure secure connections. SSL support will be stan-
dardized in the form of Transport Layer Security (TLS).

• Replication. Although most, if not all, current LDAP servers can replicate
data to other servers from the same vendor, there is no standard yet for
replicating data between servers from different vendors. The LDUP (LDAP
Duplication and Update Protocol) working group in the IETF is defining the
protocols and requirements for replication between any compliant servers.

• Access control syntax and semantics. The LDAP specifications do not
define how access control is expressed in a directory, or how access control
can be communicated to another server when data is replicated. The
LDAPEXT (LDAP Extensions) working group in the IETF is preparing
standards that allow a server to express its access control specifications in a
portable way.

• Dynamic attributes. Most directories contain data that does not change as
frequently as clients access it. There is a proposal to support short-lived
data that is automatically removed if the sponsor disappears. Such a system
could be useful for maintaining dynamic status information about applica-
tions or users.

• Transactions. Directories are now often being used in ways more like the
ways in which traditional relational databases are used—as a kind of a
lightweight Internet database. Most traditional databases use transactions
to control updates to the database. Updates that are interdependent can be
grouped into transactions. If one of the updates does not complete success-
fully, that transaction can be rolled back, restoring the data to its previous
state. There has been some interest in providing a similar feature for direc-
tories, making it possible to ensure that a number of directory operations
either all complete successfully or all fail. LDAP guarantees only that all
changes specified within a single operation are treated as a transaction.

• Various controls to provide additional functionality:

• Server-side sorting. This control requests that the server return the results
of a search sorted by one or more attributes.

Future Directions for LDAP 25

• Virtual List View (VLV). The results of a search may be more than a
client can manage at one time—thousands or even millions of entries.
VLV lets a client request an arbitrary slice out of the results (for example,
to allow the client to page through the results).

• Proxied authorization. Server applications may need to do LDAP opera-
tions on behalf of (using the identity of) many different clients, perhaps
connecting with a browser to a Web server. This control allows autho-
rization credentials to be passed along with any LDAP request.

• Duplicate Entry Representation. By using the control with an LDAP search,
a client requests that the server return separate entries for each value held in
the specified attributes. For instance, if a specified attribute of an entry holds
multiple values, the search operation will return multiple instances of that
entry, each instance holding a separate single value of that attribute.

The LDAP Information and Naming Models:
How Directories Are Organizedxxxxxxxxxx

The LDAP Information Model

LDAP inherits its information and naming models from X.500, and we have already
hinted at the contents of those models.

In LDAP, data is stored as entries. An entry has a distinguished name (DN) to
identify it uniquely within the directory, as well as one or more attributes that describe
the entry. Each attribute may have one or more values. Examples of attributes for an
entry describing a person include cn (the first and last name, or common name, of the
person), mail (the person’s e-mail address), and telephoneNumber (the person’s
phone number).

Each entry must have at least the attribute objectclass, which defines the type
of the entry. An object class defines what attributes are required to constitute an entry
and what additional attributes are allowed to be part of the entry. For example, the
organization object class defines a type of entry that represents an organization.
Required attributes of the organization object class include o (the name of the orga-
nization) and objectclass. Allowed attributes include street (the street address of
the organization) and telephoneNumber (the phone number of the organization).
Appendix D contains a list of commonly used object classes and attributes.

Attribute names are case-insensitive, so objectClass can be used interchange-
ably with objectclass or ObjectClass.

An entry usually has more than one value for the objectclass attribute. Object
classes are derived from other object classes. The base for all object classes is top. For
example, the organization object class is derived from the top object class. In the

26 The Lingua Franca of Directories Is LDAP

organization object class, the objectclass attribute has two values: top and orga-
nization.

For object classes that are not directly derived from top, all ancestors, rather
than just the most recently derived one, typically are specified as values when an entry
is created. For example, the popular inetOrgPerson object class (used to define
entries for people) is derived from organizationalPerson, which is derived from
person, which is derived from top. When you create an entry of type inetOrgPerson,
you specify all four of these values for the objectclass attribute.

If an entry has more than one objectclass value, the entry must contain the
union of all required attributes, and it may contain the union of all allowed values.
For inetOrgPerson, for example, the union of the values listed in Figure 2-2 apply.
Each object class (and each attribute) has a unique object identifier (OID).

The definitions of attribute types and object classes together make up the schema
of the directory. The example shown in Figure 2-2 uses the format of the schema con-
figuration files in Netscape Directory Server. Most LDAP servers derived from the
University of Michigan source code use a similar format. The server reads the schema
configuration files when it starts up, and it will generally not allow a client to create an
entry that violates the rules of the schema.

The LDAP Information and Naming Models 27

objectclass top

oid 2.5.6.0

requires

objectClass

allows

aci

objectclass person

oid 2.5.6.6

superior top

requires

sn,

cn

allows

description,

seeAlso,

telephoneNumber,

userPassword

FIGURE 2-2. The inetOrgPerson attributes.

(continued)

28 The Lingua Franca of Directories Is LDAP

objectclass organizationalPerson

oid 2.5.6.7

superior person

allows

destinationIndicator,

facsimileTelephoneNumber,

internationaliSDNNumber,

l,

ou,

physicalDeliveryOfficeName,

postOfficeBox,

postalAddress,

postalCode,

preferredDeliveryMethod,

registeredAddress,

st,

street,

teletexTerminalIdentifier,

telexNumber,

title,

x121Address

objectclass inetOrgPerson

oid 2.16.840.1.113730.3.2.2

superior organizationalPerson

allows

audio,

businessCategory,

carLicense,

departmentNumber,

displayName,

employeeType,

employeeNumber,

givenName,

homePhone,

homePostalAddress,

initials,

jpegPhoto,

labeledURI,

manager,

mobile,

FIGURE 2-2. (continued)

Attributes are also defined in schema configuration files. Table 2-1 shows a few
definitions of attributes.

The attribute cn represents the common name, and it is usually used to store the
full name of a person. The attribute sn represents the surname, and ou represents the
organizational unit.

The syntax type cis (“case-insensitive string”) is the most common attribute
syntax. The syntax does not necessarily tell how the attribute is stored in the directory,
but simply how its values will be compared when searching.

A typical entry for an inetOrgPerson object might look like that shown in Fig-
ure 2-3.

Note that this entry has four values for objectclass and two for ou, but one for
each of the other attributes present. Although the entry contains values for all three of
the attributes required by its object classes (objectclass, cn, and sn), it contains only
a fraction of the optional attributes allowed by them.

The LDAP Information and Naming Models 29

pager,

photo,

preferredLanguage,

mail,

roomNumber,

secretary,

uid,

x500uniqueIdentifier,

userCertificate,

userSMimeCertificate,

userPKCS12

FIGURE 2-2. (continued)

TABLE 2-1. Attribute definitions.

ATTRIBUTE OID SYNTAX

objectClass 2.5.4.0 cis

cn 2.5.4.3 cis

sn 2.5.4.4 cis

ou 2.5.4.11 cis

The LDAP Naming Model

Entries in LDAP, just as in X.500, are organized into a tree. At the top are one or more
root nodes, called suffixes or naming contexts. Under each root node may be a subtree
of additional nodes. Figure 2-4 illustrates a tree with three root nodes.

Each child of a particular node is distinguished from all siblings by its relative
distinguished name (RDN). The RDN consists of the name of one of the attributes of

30 The Lingua Franca of Directories Is LDAP

FIGURE 2-3. An inetOrgPerson entry.

dn: uid=scarter, ou=People, o=airius.com

cn: Sam Carter

sn: Carter

givenName: Sam

objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

ou: Accounting

ou: People

l: Sunnyvale

uid: scarter

mail: scarter@Airius.com

telephoneNumber: +1 408 555 4798

facsimileTelephoneNumber: +1 408 555 9751

roomNumber: 4612

userPassword: sprain

FIGURE 2-4. Directory tree with multiple naming contexts.

o=Airius.com

o=Acme.com

c=uso=Burgers.com

o=Widgets.comou=Beef ou=Pork

ou=Accounts ou=OEM Sales

Naming contexts

ou=People

uid = tmorris uid=jkarlsson uid=pjones

the entry, followed by the equal sign (=), followed by one of the values of the attribute
(for example, uid=tmorris or o=Airius.com).

You can compose the DN (distinguished name) of the entry by taking the RDN
and walking up the tree to a root node, adding a comma and the RDN of each parent
found to the end (for example, uid=tmorris, ou=People, o=Airius.com). Con-
versely, you can take a DN and break it apart at the commas to produce the RDNs of
the entry and all its parents.

Note that attribute names are case-insensitive, and that space between a comma
and the following RDN, as well as space surrounding the equal sign, is ignored.

Figure 2-5 illustrates a directory tree and the DNs of entries in the tree. The DN
of the entry uid=tmorris, ou=People, o=Airius.com is made up of the RDNs of the
entries above it in the tree (ou=People and o=Airius.com).

LDAP Spoken Here

LDAP-aware software has mushroomed in the past two years, fueled by the explosion
of electronic commerce on the Internet and by the maturing of commercial LDAP
server products. LDAP is key to providing secure and controlled access to data shared
on the Internet, and it is the natural hub for the storage and management of public
certificates.

Stand-alone LDAP servers can be obtained from Netscape, the University of
Michigan, the OpenLDAP Project (which is carrying forward the University of Michi-
gan source code), IBM, Oracle, and Innosoft.

LDAP Spoken Here 31

FIGURE 2-5. A simple LDAP tree, showing only DNs.

uid=jdaniels, ou=People, o=Airius.com

uid=scarter, ou=People, o=Airius.com

uid=tmorris, ou=People, o=Airius.com

ou=People, o=Airius.com

o=Airius.com

ou=Groups, o=Airius.com

cn=Accounting Manager, ou=Groups, o=Airius.com

Several major operating systems include or will soon include an LDAP server:
Solaris 8, the next version of HP-UX, Windows 2000, and NetWare 5.

Routers from the major vendors will use LDAP and will be manageable through
LDAP, through the standards being developed for Directory Enabled Networking
(DEN) and the Desktop Management Task Force (DMTF).

Browser and e-mail applications are increasingly able to look up users and
e-mail addresses using LDAP. The latest versions of Netscape Communicator,
Microsoft Internet Explorer, and Eudora from Qualcomm are all LDAP enabled.
Whole new application areas are emerging, with work flow and personnel informa-
tion management centering around an LDAP server to automate and streamline many
Human Resources activities, such as provisioning and benefits administration, allow-
ing a tremendous degree of (safe) employee self-administration and freeing the HR
staff from much of the tedium and the company from much of the expense.

Many Roads to Rome

Directory SDK for C

The first SDK to provide client access to LDAP was developed for the C language at
the University of Michigan. The API of this C SDK was formalized in RFC 1823.
Netscape extended the C API to support all features of LDAPv3 and made the source
code publicly available through Mozilla.org in 1998. The following is an example of a
program written with the C SDK. The program performs a simple search for all
people with the surname Jensen:

#include "ldap.h"

int main(int argc, char **argv) {

LDAP *ld;

LDAPMessage *result, *e;

BerElement *ber;

char *a, *dn;

char **vals;

int i;

/* get a handle to an LDAP connection */

if ((ld = ldap_init("localhost", 389)) == NULL) {

perror("ldap_init");

return(1);

}

/* search for all entries with surname of Jensen */

if (ldap_search_s(ld, "o=Airius.com", LDAP_SCOPE_SUBTREE,

"sn=jensen", NULL, 0, &result) != LDAP_SUCCESS) {

32 The Lingua Franca of Directories Is LDAP

ldap_perror(ld, "ldap_search_s");

return(1);

}

/* for each entry print out name + all attrs and values */

for (e = ldap_first_entry(ld, result); e != NULL;

e = ldap_next_entry(ld, e)) {

if ((dn = ldap_get_dn(ld, e)) != NULL) {

printf("dn: %s\n", dn);

ldap_memfree(dn);

}

for (a = ldap_first_attribute(ld, e, &ber);

a != NULL; a = ldap_next_attribute(ld, e, ber)) {

if ((vals = ldap_get_values(ld, e, a)) != NULL) {

for (i = 0; vals[i] != NULL; i++) {

printf("%s: %s\n", a, vals[i]);

}

ldap_value_free(vals);

}

ldap_memfree(a);

}

if (ber != NULL) {

ber_free(ber, 0);

}

printf("\n");

}

ldap_msgfree(result);

ldap_unbind(ld);

return(0);

}

Directory SDK for Java

In early 1997, Netscape released an SDK entirely in Java. An Internet Draft was pub-
lished at the same time, and in 1998 the source code was made available through
Mozilla.org. This book is about using the Java SDK. We will go into the Java SDK in
great detail shortly, but here we give a code example as a quick reference point. This
program performs the same search as the preceding C progam.

import netscape.ldap.*;

import java.util.*;

public class Search {

public static void main(String[] args) {

LDAPConnection ld = null;

Many Roads to Rome 33

int status = -1;

try {

ld = new LDAPConnection();

/* Connect to server */

String MY_HOST = "localhost";

int MY_PORT = 389;

ld.connect(MY_HOST, MY_PORT);

/* search for all entries with surname of Jensen */

String MY_FILTER = "sn=Jensen";

String MY_SEARCHBASE = "o=Airius.com";

LDAPSearchResults res = ld.search(MY_SEARCHBASE,

LDAPConnection.SCOPE_SUB,

MY_FILTER,

null,

false);

/* Loop on results until finished */

while (res.hasMoreElements()) {

/* Next directory entry */

LDAPEntry findEntry = (LDAPEntry)res.nextElement();

System.out.println(findEntry.getDN());

/* Get the attributes of the entry */

LDAPAttributeSet findAttrs =

findEntry.getAttributeSet();

Enumeration enumAttrs = findAttrs.getAttributes();

System.out.println("\tAttributes: ");

/* Loop on attributes */

while (enumAttrs.hasMoreElements()) {

LDAPAttribute anAttr =

(LDAPAttribute)enumAttrs.

nextElement();

String attrName = anAttr.getName();

System.out.println("\t\t" + attrName);

/* Loop on values for this attribute */

Enumeration enumVals =

anAttr.getStringValues();

if (enumVals != null) {

while (enumVals.hasMore Elements()) {

String aVal =

(String)enumVals.

nextElement();

System.out.println(

"\t\t\t" +

34 The Lingua Franca of Directories Is LDAP

aVal);

}

}

}

}

status = 0;

} catch(LDAPException e) {

System.out.println("Error: " + e.toString());

}

/* Done, so disconnect */

if ((ld != null) && ld.isConnected()) {

try {

ld.disconnect();

} catch (LDAPException e) {

System.out.println("Error: " + e.toString());

}

}

System.exit(status);

}

}

Java Naming and Directory Interface

Sun Microsystems, in collaboration with IBM, Novell, Netscape, and others, has
developed a generic API for interaction with various types of naming contexts, includ-
ing LDAP, NDS, and NIS. Support for each protocol is supplied by a service provider.
Using the Java Naming and Directory Interface (JNDI), the previous example of a
simple search program would look like this:

import java.util.Properties;

import java.util.Enumeration;

import java.naming.*;

import java.naming.directory.*;

class Search {

public static void main(String[] args) {

/* Specify host and port to use for directory service */

Properties env = new Properties();

String MY_HOST = "localhost";

int MY_PORT = 389;

String MY_FILTER = "sn=Jensen";

String MY_SEARCHBASE = "o=Airius.com";

env.put("jndi.service.host", MY_HOST);

Many Roads to Rome 35

env.put("jndi.service.port", MY_PORT);

try {

/* get a handle to an Initial DSContext */

DSContext ctx = new InitialDSContext(env);

/* specify search constraints to search subtree */

SearchConstraints constraints = new SearchConstraints();

constraints.setSearchScope(SearchConstraints.SUBTREE_SCOPE);

/* search for all entries with surname of Jensen */

SearchEnumeration results

= ctx.search(MY_SEARCHBASE, MY_FILTER, constraints);

/* for each entry print out name + all attrs and values */

while (results != null && results.hasMoreElements()) {

SearchResult si = results.next();

/* print its name */

System.out.println("name: " + si.getName());

AttributeSet attrs = si.getAttributes();

if (attrs == null) {

System.out.println("No attributes");

} else {

/* print each attribute */

for (AttributeEnumeration ae = attrs.getAttributes();

ae.hasMoreElements();) {

Attribute attr = ae.next();

String attrId = attr.getAttributeId();

/* print each value */

for (Enumeration vals = attr.getValues();

vals.hasMoreElements();

System.out.println(attrId + ": " +

vals.nextElement()));

}

}

}

} catch (NamingException e) {

System.err.println("Search example failed");

e.printStackTrace();

}

}

}

36 The Lingua Franca of Directories Is LDAP

The success of any directory architecture depends on the availability of APIs to
access its services. LDAP has won wide acceptance by the Internet community and

by many companies to a large extent because of the ease of access provided by the
client SDKs.

What Directory SDK for Java Can Do for You

Directory SDK for Java provides the following functionality:

• Freedom from protocol handling

• The use of standard Java objects for returning and processing data

• Utility classes for handling LDAP-specific entities

• Full access to all LDAP services

• Flexible authentication models

• The ability to run code anywhere once it is written

• Multilayered functionality

• A platform for directory-enabled applications

Freedom from Protocol Handling

The key benefit the SDK provides is freeing your program from low-level protocol
handling. The SDK handles all the data encoding that is necessary for communicating
with an LDAP service from your client code to the server. The SDK provides simple

May We
Introduce—
Directory SDK
for Java

37

C H A P T E R 3

Java-based methods to handle connecting, searching, and modifying, including creating,
adding, and deleting, LDAP data. The classes and associated methods are intuitive to
use and require only small subsets to accomplish major LDAP communications tasks.
These features allow you to focus on the task at hand without having to code socket-
level client-server LDAP communications.

The Use of Standard Java Objects for Returning
and Processing Data

The SDK utilizes standard Java data types for interaction with application code.
Search results are returned as Java Strings and/or byte arrays. For instance, to indi-
cate to the LDAPConnection.search method which attributes to return, a simple
array is passed, such as {"cn", "mail", "sn"}. Data is prepared for insertion into
the directory using the same data types. Using standard data types lets you use all of
Java’s built-in type support and makes it easy to use the SDK from existing Java code
or from JavaScript, as we will see in later chapters.

Utility Classes for Handling LDAP-Specific Entities

Certain data entities that are specific to LDAP, such as a DN or LDAP URL, can be
built or parsed automatically by methods in the SDK. The LDAPDN.explodeDN method
takes a DN and returns a Java array of Strings of each component within the DN.
For example:

String theDN="uid=tony1, ou=People, o=Netscape, c=US";

String[] parsedDN = LDAPDN.explodeDN(theDN,false);

// parsedDN now has the value {"uid=tony1", "ou=People",

"o=Netscape", "c=us"}

The boolean second parameter indicates whether to include the attribute names (uid,
ou, etc.) or not.

There are also utility methods to parse LDAP URLs. LDAP URLs have the
syntax ldap://hostname:port/basedn?attributes?scope?filter. They are fully
described in RFC 2255, and they are discussed in detail in Chapter 5. The utility
methods allow you to extract the host, port, attributes, and so on. An LDAP URL can
also be passed directly to the LDAPConnection.search method, simplifying the repre-
sentation of searches.

Full Access to All LDAP Services

The LDAP SDK provides communications and data handling to any LDAP-compliant
directory service, although some directories might provide only a subset of the LDAP
services.

38 May We Introduce—Directory SDK for Java

You can use the SDK to make alterations to the schema, query the structure of
the directory, or add new attributes to records. As an application or service program-
mer, you can interact with an LDAP directory at the level needed for your develop-
ment project. The LDAP directory with which you are communicating does not even
need to be your own; it can be a directory anywhere on the network or the Internet.
Chapter 4 will take you step by step through the installation of your own LDAP server
for use in programming and applying the examples in this book.

Flexible Authentication Models

The SDK provides authentication models that range from anonymous binds to using the
Secure Sockets Layer (SSL). You can authenticate to an LDAP directory with a distin-
guished name (DN) and password, as well as digital certificates. Other authentication
models are supported through the Simple Authentication and Security Layer (SASL).

Write Once, Run Anywhere

The promise of the Java environment is that code can be developed on one machine
and run on any other machine. As organizations begin to work more closely with their
external partners, interaction between dissimilar platforms becomes essential. Roam-
ing users and Internet users by their nature use different platforms. Build the code to
be portable and take advantage of future computing architectures.

Multilayered Functionality

Directory SDK for Java may appear overwhelming at first because of its large number
of classes and methods, but a simple search operation requires the use of just three
methods of the central class LDAPConnection. We will cover the use and calling of
these methods in Chapter 5.

A Platform for Directory-Enabled Applications

The directory is fast becoming an essential part of new corporate applications because
it provides a fast and consistent organizational, departmental, or individual view of
all entities that form the company. For new Internet applications, LDAP’s streamlined,
efficient access to remote or distributed data sources makes it a strategic component.
There is a whole new wave of application development in the area of directory-
enabled applications.

A directory-enabled application allows an organization and its programming
staff to minimize application-specific data stores. Every application-specific store

What Directory SDK for Java Can Do for You 39

requires maintenance, and at some point all these stores will contain redundant data.
For example, a building-access code system needs to know who valid employees are.
The Human Resources Department also needs this information. If both systems share
a common LDAP directory, as the workforce changes both of these systems are imme-
diately aware of who are valid employees.

Directory-enabled applications make use of directories to handle the authentica-
tion of users and the location of resources. To take advantage of these services, the
application developer needs to make the directory an integral part of the application.
The SDK provides this connection for the application developer.

An application developer can be someone writing Web server scripts, a Java servlet
programmer, an Internet client application developer, an applet writer, or a developer
who wants simply to add access to directory information to a Java application. In each
case, the SDK is the key to unlocking and using the potential of the directory.

The powerful access control model of modern LDAP directories makes it possi-
ble to share data across divisions in a controlled and safe manner. If Division A is writ-
ing an application, it can allow appropriate people from Division B access while
retaining control of the individuals’ records. Different individuals, organizations, or
services can be limited to different views of the same data. Removing an entry will
immediately result in a new consistent view for all clients.

The directory is now a single source for all information companywide. The same
directory can host data for your business and trading partners as well. The application
developer can now concentrate on building the applications, while the directory,
through the SDK, provides a “black box” of valid credential information, as well as
any application-specific data.

What Else Can the SDK Do for Me?

Let’s examine some specific examples in which the SDK in conjunction with an LDAP
directory can benefit a project.

Dynamic Organizational Chart

One resource that any organization can benefit from having online is up-to-date orga-
nizational charts. In any medium-sized to large organization it is difficult to keep
organizational charts up to date. Reorganizations, promotions, new hires, termina-
tions—it seems as if the charts are never representative of the actual entities. The
charts in most cases also require a significant amount of work: gathering data and
preparing drawings or documents. Leveraging the personnel information stored in a
directory, an up-to-date organizational chart can be created and presented on the fly.

40 May We Introduce—Directory SDK for Java

The directory and SDK provide a great resource for empowering this kind of
application, with the application running locally as a Java applet or remotely as a
servlet. The directory contains an optional attribute for an inetOrgPerson called
manager that stores a full DN to the corresponding LDAP record that represents that
individual’s manager. Using this information, an organizational chart application can
traverse the directory tree and locate direct reports to an individual. Some simple
pseudocode to do this would be as follows:

Search for all person entries lacking a manager

Divide them into groups based on their organizational units

Create an organizational tree, divided horizontally into groups

For each group {

explore the reporting structure by calling getReports for

each person in the group

}

display tree based on structure found

getReports(String inDN) {

Search records in directory with manager attribute = inDN

for each record found, call getReports, passing the DN of the

record

get the "common name" and "title" attributes of each record

and add them as a child to inDN in the organizational tree

}

The data would need to be displayed in an attractive graphical user interface
(GUI), but the basic algorithm for collecting the data is to call the getReports method
recursively to build the organizational chart. In addition, the multithreading capabili-
ties of Java allow this application to start each recursive search as a different thread.
Output from such a program might look like what is presented in Figure 3-1.

Chapter 12 will present a Java program that dynamically draws an organiza-
tional chart based on organizational information in a directory.

Directory-Linking Tool

The goal of a directory-linking tool is to provide a way to join disparate data sources,
bringing them together inside the LDAP directory. Most organizations have different
systems that still use older or proprietary directories or databases. The LDAP direc-
tory can be the unifying source to feed these systems or to take information from
them. The combination of Directory SDK and other Java packages enables this

What Else Can the SDK Do for Me? 41

exchange of information by providing access to relational database sources through
JDBC (Java Database Connectivity), or through a device driver accessible from Java.
Pseudocode to perform this task would be as follows:

read record from source system, extracting needed fields

search for corresponding entry in the directory

if data or record does not match or exist {

add or replace with new information

}

repeat sequence

Figure 3-2 illustrates a directory as the central hub for linking company data.
Within the Sun-Netscape Alliance, for example, many different systems are

linked together via the LDAP server, which functions as the corporate directory.

42 May We Introduce—Directory SDK for Java

FIGURE 3-1. Sample organizational chart.

Access control has been defined for various parts of the directory tree, for different
administrative groups, and for individual attributes and entries to allow only certain
groups to view or change the data.

One such example is the employee photo for building-access badges. Privileged
information is available only to security personnel. Other information, such as phone
number and e-mail address, can be read by anyone but modified only by the user who
corresponds to the entry or by an administrator. Through the use of a single assigned
user ID and password, maintained in the LDAP system, controlled access is gained to
all systems within the company. Many of these different systems are linked together
through background processes to keep the data consistent. When a user changes her
password or home phone number, for example, it is recognized companywide through
the directory.

Access Control for Existing or New Applications

In the past, application developers were always faced with decisions on how to con-
trol access to their code, and often they ended up building access control into their
application code. As a result, many of these applications required each user to be
entered into a table or file. With LDAP, applications or processes can validate against
the directory. Some simple pseudocode to handle this function is as follows:

What Else Can the SDK Do for Me? 43

Corporate
directory

LDAP
SDK

LDAP
SDK

LDAP
SDK

LDAP
SDK

Database

FIGURE 3-2. Linking data repositories via the LDAP SDK.

obtain user ID and password

search for the entry with the specified user ID

if found, authenticate using the DN of the entry and the supplied

password

if authentication failed, user is not authorized

check if user is allowed access to the application entry by

attempting to read it

if allowed, continue the operation

Encapsulating this functionality into a JavaBean, class library, or EJB (Enterprise
JavaBean) on the network that communicates with the directory to handle authentica-
tion information can make this a one-line check for the Java developer. The SDK code
to authenticate against the directory is very short (shown here as a snippet, with error
handling omitted for brevity):

LDAPConnection ldap_conn = new LDAPConnection();

try {

ldap_conn.connect(HOSTNAME,PORT);

String[] attrs = { ldap_conn.NO_ATTRS };

LDAPSearchResults res =

ldap_conn.search(BASE,

ldap_conn.SCOPE_SUB,

"uid=" + uid,

attrs,

false);

// Need the DN for authentication

String dn = res.next().getDN();

// Attempt validation

ldap_conn.authenticate(dn, pwd);

// User authenticated

} catch (LDAPException e) {

// User not validated

}

if ((ld != null) && ld.isConnected()) {

try {

ld.disconnect();

} catch (LDAPException e) {

System.out.println(e.toString());

}

}

44 May We Introduce—Directory SDK for Java

Installation and Setup of the SDK

Staying Current

The SDK and SDK source code included on the CD-ROM are version 4.0 of Directory
SDK for Java. To obtain the latest version of this software, visit the Netscape developer
site at http://developer.netscape.com/tech/directory/downloads.html. You
will be presented with a choice to download the software. If the version on the Web site
is newer than 4.0, download the latest Directory SDK for Java. The complete source
code to the SDK is also available at http://www.mozilla.org/directory/. Directory
SDK for Java works with Java Development Kit (JDK) 1.1 or higher. The GUI exam-
ples in this book require JDK 1.2 or higher because they use Swing 1.1.

Installing the SDK

After downloading and expanding the compressed file in a location of your choice,
you will have a series of subdirectories. To make it easier to follow the examples in the
book, we recommend installing the files in the following location:

c:\netscape\ldapjava (Windows)

/usr/opt/netscape/ldapjava (UNIX)

The directory that contains ldapjava will be referred to in the text as
<LDAPSDKHOME>. For example, <LDAPSDKHOME>/doc refers to the doc directory of
the SDK. Figure 3-3 illustrates the directory structure of the SDK installation.

<LDAPSDKHOME>/doc contains the entire documentation set for the SDK in
HTML format. To use the documentation, point your browser at the index.html file.

<LDAPSDKHOME>/examples contains many code samples, including code that
calls the SDK from JavaScript and code that uses LDAP JavaBeans.

<LDAPSDKHOME>/tools contains command-line tools source code that imple-
ments the functionality of the platform-native command-line tools included with
Netscape Directory Server.

<LDAPSDKHOME>/beans contains LDAP JavaBean class files.
<LDAPSDKHOME>/packages contains two JAR files that contain the classes of the

SDK. Make sure you also have a Java compiler (javac) in your PATH. The compiler
must be version 1.1 or later (1.2 or later for the GUI examples).

The next step is to set up your Java CLASSPATH environment variable to include
the two JAR files in the <LDAPSDKHOME>/packages directory. These files are
ldapjdk.jar and ldapfilt.jar. The CLASSPATH settings shown in the examples that
follow should be applied so that they take effect for all windows opened (defined in
your .cshrc or autoexec.bat files, or in Control Panel/System/Environment).

In UNIX with csh or tcsh, use the following command:

Installation and Setup of the SDK 45

setenv CLASSPATH <LDAPSDKHOME>/packages/ldapjdk.jar:<LDAPSDKHOME>/

packages/ldapjdk.jar:$CLASSPATH

In Windows use

set CLASSPATH=<LDAPSDKHOME>/packages/ldapjdk.jar;<LDAPSDKHOME>/

packages/ldapjdk.jar;%CLASSPATH%

After modifying the CLASSPATH, go to the directory tools/java and compile
LDAPSearch.java to verify the development environment, as outlined here:

1. Open a command window on your system and switch to the directory
<LDAPSDKHOME>/tools.

46 May We Introduce—Directory SDK for Java

FIGURE 3-3. SDK installation folders.

2. Compile the LDAPSearch.java file by issuing the following command:

javac LDAPSearch.java

If the compilation succeeds, the CLASSPATH is set up correctly and you can begin
to use the SDK in the programming examples in this book. If you receive the following
error:

LDAPSearch.java:4: Package netscape.ldap not found in import

there is a problem with your CLASSPATH.
If you are on the Internet and wish to search a publicly available directory (we

will walk through installing your own directory server in Chapter 4), you can now
exercise the class you just compiled with the following command:

java LDAPSearch -h memberdir.netscape.com -b

"ou=member_directory,o=netcenter.com" "cn=tony d*" cn mail

This command executes a search against the Netcenter LDAP directory (one of
the largest such directories on the Net, with many millions of entries). You will get
results of the following form:

dn: uid=5473266:PCMv1, ou=member_directory, o=netcenter.com

cn: Tony Diaz

mail: admin@akfast.net

dn: uid=5793767:PCMv1, ou=member_directory, o=netcenter.com

cn: Tony DelNero

mail: tdelnero@binghamt.gannett.com

dn: uid=4132849:AIMv1, ou=member_directory, o=netcenter.com

cn: Tony Davis

mail: tony.davis@unisys.com

dn: uid=6053852:SWDv1, ou=member_directory, o=netcenter.com

cn: Tony Duffy

mail: tony.duffy@cableol.co.uk

You will probably get more hits than are shown here. In fact, you will probably
receive a message like this:

netscape.ldap.LDAPException: error result (4); Sizelimit exceeded

Installation and Setup of the SDK 47

This message indicates that you have exceeded the limit the server has been con-
figured to return, or that the server would return more entries than you have
requested. The default maximum number of results requested by the SDK is 1,000,
but many public LDAP servers are configured to return no more than 100 (or even
less). You can tell LDAPSearch and the SDK to request only 50 results by including
“-z 50” in the command line:

java LDAPSearch -h memberdir.netscape.com -b

"ou=member_directory,o=netcenter.com" -z 50 "cn=tony d*" cn mail

Let’s examine what we requested and the result set returned. First the request:

java LDAPSearch -h memberdir.netscape.com -b

"ou=member_directory,o=netcenter.com" "cn=tony d*" cn mail

The parameter -h specifies the host name we are searching. The option -b indi-
cates the base in the directory from which to start the search. We have requested all
entries that have a common name starting with “tony d.” Note that common-name
attribute values are case-insensitive, so the same results would be returned for “Tony
D” or “ToNy D,” for example. For all the entries that match these parameters we
want the common name, which corresponds to the cn attribute, and the e-mail
address, which corresponds to the mail attribute, returned.

Note that the result set does not contain the data in sorted order. The server can
be asked to sort the data before returning it, or the SDK can do the sorting. We will
cover sorting in more detail in Chapter 5. The server basically returned all values that
matched our search in whatever order it found them.

Conclusion

If you develop applications, work in Information Systems, or handle processes that
involve interacting with people, you can take advantage of Directory SDK for Java.
The SDK provides access to the corporate directory that contains the most up-to-date
people, network, or systems information. As a developer, you now have the software
and an overview of the strategy to design and connect systems to share a common
source for authoritative user and authentication information.

In this chapter we have examined some common applications that can be
empowered through the SDK, as well as installation of the SDK. Chapter 4 will guide
you through installing your own directory server, and then we will introduce detailed
programming examples.

48 May We Introduce—Directory SDK for Java

P A R T I I

GETTING
STARTED

C H A P T E R 4 Setting Up Your
Own Directory

C H A P T E R 5 Searching with
the SDK

C H A P T E R 6 Creating and
Maintaining
Information

C H A P T E R 7 Securing the Data

Now that you’re familiar with LDAP and the features available in Directory SDK for
Java, you’re ready to start writing your own LDAP applications. To develop and

run your own LDAP applications, you will need access to an LDAP directory. Although
you can use public directories on the Internet, it is useful to set up your own directory.
You can use an evaluation copy of Netscape Directory Server, included on the CD-
ROM that comes with this book, to test your LDAP applications. Other LDAP servers
that comply with LDAP version 3 will also work with the code and examples in this
book, and much of the code will work also with servers that support only LDAP ver-
sion 2, but some of the more advanced sections may not work with other servers.

In this chapter you will install Netscape Directory Server. You will set up your
own test directory and use the available tools to view the directory contents.

Downloading and Installing Netscape Directory Server

Netscape Directory Server is a robust, scalable LDAP server designed to manage an
enterprise-wide or Internet-wide directory of users and resources. You can download
an evaluation copy of Netscape Directory Server under Netscape’s Test Drive program,
or install the copy included on the CD-ROM for use with this book.

Before You Download and Install the Software

Before you install any of the software, check its system requirements.

• To determine the system requirements for Netscape Directory Server, see
the Directory Server documentation page at http://home.netscape.com/
eng/server/directory/. In the release notes, you can find a link to the
installation requirements.

Setting Up Your
Own Directory

51

C H A P T E R 4

• To determine the system requirements for Netscape’s Directory SDK for
Java, see the Netscape Directory Developer Central Web page at http://
developer.netscape.com/tech/directory/.

Downloading Netscape Directory Server

To download an evaluation copy of Netscape Directory Server, go to Netscape’s prod-
uct download page at http://home.netscape.com/download/index.html. Follow
the links that point to the Directory Server download page.

You should also download a copy of the Directory Server product documenta-
tion from http://home.netscape.com/eng/server/directory/. The documenta-
tion is available in PDF format (which you can read in Adobe Acrobat Reader) and as
HTML files.

Installing Netscape Directory Server

Before you install Netscape Directory Server, read the release notes and the Netscape
Directory Server Installation Guide.

Since you will be installing the sample directory database, you can use the
Express Installation option. When you use this option, many of the configuration
options are already set for you.

Unzip the setup files from the CD-ROM , or the ones that you have downloaded,
and run the setup program. Figures 4-1 through 4-6 illustrate the installation for the
Windows NT version. When prompted by the setup program, you need to specify the
following information:

• What you want to install. You will be given the option of installing Netscape
Servers or Netscape Console (see Figure 4-1). Select Netscape Servers.

• The type of installation. You will be given the options of Express, Typical,
or Custom (see Figure 4-2). Select Express.

• The location where you want to install the server (see Figure 4-3).

• The server components that you want to install (see Figure 4-4). Install
Netscape Server Products Core Components (required for any Netscape
server), Netscape Directory Suite, and Administration Services. You do not
need to install Netscape Directory Server Synch Service.

• (UNIX only) The user and group that you want the server to run as.

• The ID and password for the Configuration Directory Server Administra-
tor (see Figure 4-5). You will use this ID and password to log into Netscape

52 Setting Up Your Own Directory

Console (the administration GUI for Netscape servers). From Netscape
Console, you can modify the Directory Server configuration settings. For
example, you can use “admin” as the ID.

• The distinguished name (DN) and password of the Directory Manager (see
Figure 4-6). This information identifies a user in the directory who has
access and privileges to manage the directory. For example, the Directory
Manager can add new users to the directory and modify existing users.

Keep track of the DN and password of the Directory Manager. You will need to
use these when you use LDAP clients to add or modify data in the sample directory.
You will also need this information to import the sample database into the Directory
Server.

Downloading and Installing Netscape Directory Server 53

FIGURE 4-1. Select server or console.

The following are examples of DNs that you may want to assign to the Directory
Manager:

• cn=Directory Manager

• cn=root

• uid=ldapadmin

Do not use uid=admin, because an administrative user entry with the user ID
“admin” is created automatically during installation. The Directory Manager identity
should be distinct from any user entries.

At the end of installation, you will be prompted to keep or delete the installation
cache. You can delete this cache; it is used primarily to replay an installation with no
user interaction.

54 Setting Up Your Own Directory

FIGURE 4-2. Select installation type.

After you finish the Express Installation, you can set up the sample database pro-
vided on the CD-ROM that accompanies this book.

Setting Up the Sample Database

The CD-ROM includes a sample database for a company. It will be used throughout
this book, so you need to import this database into your directory. The sample data-
base uses the naming context (the top of the directory tree) o=Airius.com. There is no
standard way to create a naming context in a directory. If you installed Netscape
Directory Server and chose Express Installation, the naming context has already been
created. With Novell Directory Services version 8, you must use NWAdmin or one of
the other administrative tools to create the naming context before you can import the
database. Other servers require other procedures.

Downloading and Installing Netscape Directory Server 55

FIGURE 4-3. Choose installation directory.

To import the data, you can use the LDAPModify command-line tool in the SDK:

java LDAPModify -c -a -D "cn=Directory Manager" -w <password> -f

<CDROM>/ldif/airiusplus.ldif

Replace cn=Directory Manager with the DN of a privileged user if you do not
have an administrative user with that DN. Replace <password> with the password for
the user, and <CDROM> with the location of the CD-ROM. The specified options tell the
command to add all entries in the file airiusplus.ldif, to continue if it encounters
an error (for example, if an entry already exists in the directory), to use the specified
authentication DN and password, and to import data from the airiusplus.ldif file.

Figure 4-7 illustrates part of the hierarchy of the sample directory. Entries repre-
senting users are located under the ou=People, o=airius.com entry. Entries repre-
senting groups are located under the ou=Groups, o=airius.com entry.

56 Setting Up Your Own Directory

FIGURE 4-4. Select products.

Using the Command-Line
Tools with Your New Directory

Now that you have set up your own directory, you may want to view and modify its
contents.

Directory SDK for Java includes the source code for several command-line tools
that you can use to work with data in the directory. In Chapter 3 you compiled one of
these tools. In the previous section we used LDAPModify to import the sample data-
base. Now you can use these tools against the sample directory that you have set up.

Finding Entries with LDAPSearch

You can use the LDAPSearch tool to view entries in the sample directory. Here we pro-
vide some sample commands. The syntax for this tool (as well as the criteria required
for performing searches) will be discussed in Chapter 5.

Using the Command-Line Tools with Your New Directory 57

FIGURE 4-5. Select Administrator ID and password.

58 Setting Up Your Own Directory

o=airius.com

ou=People,
o=airius.com

ou=Groups,
o=airius.com

uid=bjensen,
ou=People,
o=airius.com

cn=HR Managers,
ou=Groups,

o=airius.com

FIGURE 4-7. Structure of the Airius database.

FIGURE 4-6. Select Directory Manager ID and password.

Use the following command to find Barbara Jensen’s entry in the directory:

java LDAPSearch -b "o=airius.com" "uid=bjensen"

Using the Command-Line Tools with Your New Directory 59

These examples assume that your directory is running on the same machine as
Directory SDK for Java. The examples also assume that the server is running on

port 389. If these assumptions are not correct, use the -h <hostname> option to
specify the host name or IP address of directory server, and use the -p <port number>
option to specify the directory server port.

Use the following command to find any entry with the last name Jensen in Air-
ius.com:

java LDAPSearch -b "o=airius.com" "sn=jensen"

Use the following command to display the e-mail addresses and telephone num-
bers of any entry with the last name Jensen in Airius.com:

java LDAPSearch -b "o=airius.com" "sn=jensen" mail telephoneNumber

Use the following command to find all entries at one level under the o=airius.
com entry:

java LDAPSearch -b "o=airius.com" -s one "objectclass=*"

Use the following command to find all entries under the ou=People, o=airius.
com entry:

java LDAPSearch -b "ou=People, o=airius.com" "objectclass=*"

Adding Entries to the Directory

To add an entry to the directory, you can use the LDAPModify command-line tool. Use
the following syntax:

java LDAPModify -a [options]

The -a option indicates that you want to add entries to the directory. Some of
the basic options you may want to specify include the following:

• -h <hostname>. Use this option to specify the host name or the IP address
of Directory Server. If you have a directory server running on the same
machine as Directory SDK for Java, you do not need to specify this option.
By default, LDAPModify uses “localhost” as the host name.

• -p <port number>. Use this option to specify the port number of directory
server. If your directory server is running on port 389 (the default port for
LDAP), you do not need to specify this option. By default, LDAPModify uses
389 as the port number.

• -D <bind DN>. Use this option to specify the distinguished name of the user
that you want to authenticate as. The sample Airius.com directory is set
up to restrict most users from adding entries to it. One of the few users with
permission to add an entry is the Directory Manager (whose DN and pass-
word you selected when you installed Directory Server). To add entries,
you need to specify the -D <bind DN> option to authenticate as the Direc-
tory Manager.

• -w <password>. Use this option to specify the password of the user that
you want to authenticate as. For example, when authenticating as the
Directory Manager, use the -w option to specify the password for the Direc-
tory Manager.

• -f <ldif_file>. Use this option to specify the name of the file containing
the entries you want to add. If you do not use this option, LDAPModify
expects you to enter the entries directly at the command line. When you
specify the entries to be added, you must use the LDAP Data Interchange
Format (LDIF). LDIF is described in more detail in the next section.

You can also specify the -H option to get more information on the other options.
The next sections explain the LDIF file format and the types of entries you can

add. The last section of the chapter provides examples of using LDAPModify to add
entries.

Understanding LDIF: How to Describe a Directory Entry

The LDAP Data Interchange Format (LDIF) is a format for defining directory entries
in text format. When you imported the sample database into the directory server, the
sample data was in LDIF format. Before you can add your own entries to the sample
database, you need to understand how to use the LDIF format to define the new
entries.

60 Setting Up Your Own Directory

An LDIF entry specifies the following information:

• The distinguished name (DN) that identifies the entry. The DN of an
entry identifies its location in the directory. No two entries can have the
same DN in a directory. For example, the DN uid=bjensen, ou=People,
o=Airius.com identifies an entry for the user with the user name
“bjensen.” This entry is under the organizational unit People in the direc-
tory for the organization Airius.com.

• The object classes that apply to the entry. An object class defines the
required and allowed attributes of an entry. For example, the object class
for organization requires the attribute o, which identifies the organization
(o=Airius.com). This object class also allows the attribute telephoneNumber,
which represents the main telephone number of the organization. Object
classes are described in more detail in the next section.

• The attributes and corresponding values of the entry. Attributes and their
values specify information about an entry. For example, an entry describ-
ing a person named Barbara Jensen has the attributes cn=Barbara Jensen
(cn identifies the common name of the person) and sn=Jensen (sn identifies
the surname, or last name, of the person).

LDIF entries for adding data to a directory have the following format:

dn: <distinguished name>

objectClass: <object class>

objectClass: <object class>

...

<attribute type>[;optional subtype]: <attribute value>

<attribute type>[;optional subtype]: <attribute value>

...

Using the Command-Line Tools with Your New Directory 61

Unlike many other command-line tools, LDAPModify does not display usage
information if you run the command without any options. LDAPModify expects

you to enter data through standard input if you don’t use the -f <ldif_file>
option, so the tool will simply wait for you to enter LDIF data. If you want to see a list
of the available options, you must specify the -H.

The following example is an LDIF entry for a user named Barbara Jensen:

dn: uid=bjensen, ou=People, o=airius.com

objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

cn: Barbara Jensen

cn: Babs Jensen

sn: Jensen

givenName: Barbara

ou: Product Development

ou: People

l: Cupertino

uid: bjensen

mail: bjensen@airius.com

telephoneNumber: +1 408 555 1862

facsimileTelephoneNumber: +1 408 555 1992

roomNumber: 0209

userPassword: hifalutin

This LDIF entry specifies the following information:

• Barbara Jensen’s distinguished name is uid=bjensen, ou=People,
o=airius.com.

• The entry for Barbara Jensen has four object classes: top, person,
organizationalPerson, and inetOrgPerson.

• Some of the attributes for Barbara Jensen’s entry include her first and last
name, her e-mail address, and her telephone number.

You can break up any line into multiple lines if the line is long and you want the
text to wrap around to the next line. Simply add a space at the beginning of each con-
tinued line. For example, suppose you want to break up the following lines into mul-
tiple lines:

cn: Barbara Jensen

cn: Babs Jensen

Add a space at the start of each line that continues the attribute definition:

cn: Barb

ara Jen

62 Setting Up Your Own Directory

sen

cn: Babs Jen

sen

If you want to see more examples of LDIF entries, use a text editor to open the
airiusplus.ldif file (the file you imported into your directory earlier).

Object Classes: Determining What Information
Makes Up an Entry

Object classes determine which attributes are required and which attributes are
allowed in an entry. They effectively define a particular kind of entry. The following
object classes are used for most of the entries in the sample directory:

• inetOrgPerson. This object class defines the type of entry that describes a
person. The required attributes of entries with this object class are cn, which
specifies the first and last name of the person (the common name), and sn,
which specifies the last name of the person (the surname). When you add a
new person to the directory, you must specify the cn and sn attributes in the
LDIF entry for that person. Examples of allowed attributes for this object
class include mail (the person’s e-mail address) and telephoneNumber (the
person’s phone number). If an attribute is allowed, you can specify that
attribute in the LDIF entry for that person.

• organizationalUnit. This object class defines the type of entry that
describes an organizational unit. The only required attribute for this object
class is ou, which specifies the name of the organizational unit. When you
add an organizational unit to the directory, you must specify the ou
attribute in the LDIF entry.

• organization. This object class defines the type of entry that describes an
organization. The required attribute for this object class is o, which speci-
fies the name of the organization. When you add an organization to the
directory, you must specify the o attribute in the LDIF entry.

Object classes are defined in the schema of the directory. You can obtain a volu-
minous listing of all object classes and attributes with the LDAPSchema.main method,
one of the classes in the SDK:

java netscape.ldap.LDAPSchema localhost 389

Replace localhost with the host name or IP address of your directory, and 389
with its port number.

Using the Command-Line Tools with Your New Directory 63

If you have installed Netscape Directory Server, you can see a list of all object
classes in the directory by using Directory Server Console:

1. Click on the Configuration tab. A two-pane window will be displayed: the
left pane lists items that you can configure (including the database), and the
right pane lists configuration options for the selected item.

2. Expand the Database item in the left pane, and select the Schema folder.
In the right pane, a list of object classes for this directory is displayed under
the Object Classes tab.

3. Select an object class from the list to display the required and allowed
attributes for that class.

Appendix D lists the most commonly used LDAP object classes and attributes.

Choosing a Distinguished Name: Where
Do You Want to Add the Entry?

One of the most important steps in creating a new entry is selecting the distinguished
name for the entry. The DN identifies the entry and determines where the entry exists
in the directory hierarchy.

In the sample database, most entries for people are located under the ou=People,
o=airius.com entry. The DNs for these entries end with ou=People, o=airius.com
(for example, uid=bjensen, ou=People, o=airius.com). If you are adding entries
for people and want to add these entries under ou=People, o=airius.com, be sure
that the DN for the entry ends with ou=People, o=airius.com.

If you want to add entries under your own organizational unit entry, you must
add the organizational unit entry first. The directory does not create new parent
entries automatically.

For example, suppose you want to add an entry with the distinguished name
uid=me, ou=My Group, o=airius.com. You must first add the entry for ou=My
Group, o=airius.com. Otherwise the server will report an error indicating that the
entry ou=My Group, o=airius.com does not exist.

In addition, note that commas are used as delimiters in a DN. If you want to use
a comma within a value (for example, ou=Subsidiary, Ltd), you must escape each
comma with a backslash (for example, ou=Subsidiary \, Ltd).

Examples of Defining and Adding Entries

Now that you are familiar with the LDIF syntax, object classes, and distinguished
names, you can create an LDIF file with new entries and use LDAPModify to add those
entries to the directory.

64 Setting Up Your Own Directory

Use a text editor to create a new LDIF file. When defining an LDIF entry, specify
any required attributes for that entry. As you include attributes in an entry, be sure
that those attributes are allowed for that type of entry.

If you are adding entries about people, use entries that have the object class
inetOrgPerson if your directory server supports it. Netscape Directory Server and
Novell Directory Services version 8 support the inetOrgPerson object class, and
Microsoft Active Directory has a similar object class (user). These LDIF entries must
include the following information:

dn: <distinguished name>

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

cn: <first name and last name>

sn: <surname>

[any other allowed attributes that you want to specify]

...

For example, the following LDIF entry describes a person named Ulf Jensen:

dn: uid=ujensen, ou=People, o=airius.com

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

cn: Ulf Jensen

sn: Jensen

uid: ujensen

mail: ujensen@airius.com

telephoneNumber: +1 408 555 1212

...

If you are adding entries for organizational units, you need to use entries that
have the object class organizationalUnit. These LDIF entries must include the fol-
lowing information:

dn: <distinguished name>

objectClass: top

objectClass: organizationalUnit

ou: <name of the unit>

[any other allowed attributes that you want to specify]

...

Using the Command-Line Tools with Your New Directory 65

For example, the following LDIF entry describes an organizational unit named
Quality Control:

dn: ou=Quality Control, o=airius.com

objectClass: top

objectClass: organizationalUnit

ou: Quality Control

...

Save the LDIF file and run LDAPModify to add the entries. For example, if the
new entries are defined in a file named entries.ldif and if your Directory Manager
has the DN cn=Directory Manager and the password “23skidoo,” you can use the
following command:

java LDAPModify -a -D "cn=Directory Manager" -w 23skidoo -f

entries.ldif

Note that this example assumes you are running the directory on the same
machine as Directory SDK for Java, as well as on port 389. If these assumptions are
not correct, use the -h <hostname> option to specify the host name of the directory,
and use the -p <port number> option to specify the Directory Server port number.

Conclusion

You have now installed a directory that you can search and update as you explore
LDAP and Directory SDK for Java, and you’ve tried out a couple of the command-line
tools included with the SDK to display and modify the directory contents. Chapter 5
will dive into Java programming for directories, introducing the support provided by
the SDK for searching for information.

66 Setting Up Your Own Directory

As you may recall from Chapter 1, the major feature of an LDAP directory is its
ability to return search results on queries rapidly. The SDK provides many flexible

methods for obtaining and handling search results from the directory. We will focus in
this chapter on building queries using the SDK to retrieve the information we need.

The result set from a search can easily be parsed to return the entry’s name and
all or a subset of its attributes and values. In our discussion of searches, we will take
an example-based approach. Most of the examples here can be run directly from the
command-line interface with the java command. It is assumed that you have installed
or have access to a directory server and have loaded the sample database from the
LDIF file that is supplied on the CD-ROM that accompanies this book.

Our First Search

Before you can search an LDAP directory, you need certain information:

• Host name of the machine where the directory is installed

• Port number of the directory server

• Base DN of the directory tree managed by the server

• Scope of the search

• Search filter

• Attributes to request

• Optionally, search preferences

Searching
with the SDK

67

C H A P T E R 5

Host Name

The host name directs the search to the machine where the directory resides. This
parameter is mandatory and is usually of the form machinename.domain—for exam-
ple, dirhost.acme.com. If you are at the console on the machine that is running the
LDAP server, you can use the host name “localhost” for your test server. You can
specify the IP address of the host instead if you wish—for example, 127.0.0.1 for
“localhost.”

Port

The port is the TCP port of the machine (indicated by the host name) where the direc-
tory server is listening for LDAP connections. The standard port for LDAP is port 389
for non-SSL connections. You can use the constant LDAPConnection.DEFAULT_PORT
for port 389. For SSL-based connections the default port is 636. This is not to say that
you cannot have an LDAP server listening on any port you desire, but if you wish to
communicate and make your services available to the widest audience, stick to the
standard port numbers.

Base DN

The base distinguished name (DN) indicates where in the LDAP directory you wish to
begin the search. An LDAP directory is arranged in tree fashion, with a root and vari-
ous branches off this root. Figure 5-1 depicts a typical architecture. The base DN is
used to indicate at which node the search should originate. For example, we could
indicate a base of o=airius.com for a search that starts at the top and proceeds down-
ward. If instead we specified a base DN of ou=customers, o=airius.com, then any
entries above this tree level would not be eligible for searching. It is important to spec-
ify the base DN correctly to ensure that you receive the anticipated results.

Scope

Scope is the starting point of a search and the depth from the base DN to which the
search should occur. There are three options (values) for the scope:

1. BASE, represented by the constant LDAPConnection.SCOPE_BASE, is used to
indicate searching only the entry at the base DN, resulting in only that
entry being returned (if it also meets the search filter criteria). Figure 5-2
depicts the scope of a base-level search.

68 Searching with the SDK

2. ONE, represented by the constant LDAPConnection.SCOPE_ONE, is used to
indicate searching all entries one level under the base DN—but not includ-
ing the base DN. Figure 5-3 depicts the scope of a one level search.

3. SUBTREE, represented by the constant LDAPConnection.SCOPE_SUB, is used
to indicate searching of all entries at all levels under and including the spec-
ified base DN. Figure 5-4 depicts the scope of a subtree search.

The base DN and scope parameters can dramatically affect the number of
records returned from a query. It is important to understand what is involved in using
these arguments.

Our First Search 69

o: Airius.com

o=Airius.com

ou: People

ou=People, o=Airius.com

ou: Groups

ou=Groups, o=Airius.com

cn: Babs Jensen
uid: bjensen

uid=bjensen, ou=People, o=Airius.com uid=kjensen, ou=People, o=Airius.com

cn: Karl Jensen
uid: kjensen

FIGURE 5-1. Typical directory architecture.

o: Airius.com
Search base: o=Airius.com
Search scope: SCOPE_BASE

ou: People ou: Groups

cn: Babs Jensen
uid: bjensen

cn: Karl Jensen
uid: kjensen

FIGURE 5-2. Scope BASE search.

Filter

The search filter is the query string. It is used to filter the entries in the directory and
produce the desired set of matching records. Filters are built using parentheses and
combinations of the symbols &, |, and !, which represent AND, OR, and NOT, respec-
tively. If you wanted to locate all people with “tony” at the beginning of their names,
the following filter would do the trick:

(&(objectclass=person)(cn=tony*))

This expression represents a search for all entries with an object class of type
person in which the common name begins with “tony.” Like most other LDAP attri-

70 Searching with the SDK

o: Airius.com
Search base: o=Airius.com
Search scope: SCOPE_ONE

ou: People ou: Groups

cn: Babs Jensen
uid: bjensen

cn: Karl Jensen
uid: kjensen

FIGURE 5-3. Scope ONE search.

o: Airius.com
Search base: o=Airius.com
Search scope: SCOPE_SUB

ou: People ou: Groups

cn: Babs Jensen
uid: bjensen

cn: Karl Jensen
uid: kjensen

FIGURE 5-4. Scope SUBTREE search.

butes, the cn attribute has case-insensitive syntax, so replacing tony* with Tony* or
TONY* would yield the same results.

Search filters can be nested to any level:

(&(objectclass=person)(|(cn=sam carter) (cn=tony*)))

This filter says to find all entries with object class person in which the common
name is Sam Carter or begins with “tony.” Complex filters can be built using the oper-
ators and corresponding parentheses. A logical operator should appear before the
parenthesis enclosing the group of compares it affects. You can specify the order for
operators by nesting parentheses.

Table 5-1 lists all the operators for a search filter. These options can be combined
using parentheses, as shown in the examples already given. Wild cards can also be
used for filters—for example, (cn=tony*).

Attributes

Among the attributes of an LDAP entry for a person are cn, sn, and givenName. In the
LDIF record for Babs Jensen that follows, the attribute names are marked in bold.

Our First Search 71

TABLE 5-1. Search filter operators.

OPERATOR MEANING

| OR

& AND

! NOT

= Entry attribute equals value (e.g., cn=John Doe)

>= Entry attribute is greater than or equal to value (e.g., cn>=John Doe,
which would find Tom Doe among other entries)

<= Entry attribute is less than or equal to value

=* All entries that have a value for the attribute (e.g., cn=* for all entries with
a cn value)

~= Entries that approximately match the value—a soundex match for values
that “sound like” the value (e.g., cn~=olson to match Olson, Olsson, and
Oleson)

Each entry can contain numerous attributes—the specific ones determined by the
object classes of the entry. Some attributes are optional for a particular object class,
and some are required, as discussed in Chapter 2.

dn: uid=bjensen, ou=People, o=airius.com

cn: Babs Jensen

sn: Jensen

givenName: Barbara

objectclass: top

objectclass: person

l: Cupertino

uid: bjensen

mail: bjensen@airius.com

telephoneNumber: +1 408 555 1862

roomNumber: 0209

userPassword: hifalutin

The search attributes in a search request represent the values to return for
records matching the filter, starting at the base DN and progressing through the scope
level desired. You should request only attributes that you need. Requesting all attri-
butes for a large result set can significantly increase processing time and memory
usage. Note that specifying null for the attributes field of the search or read methods
of LDAPConnection means to return all the attributes associated with each entry. If you
wish to retrieve no attributes for an entry, use the constant LDAPConnection.NO_ATTRS
for the attributes parameter.

LDAP attributes are either user attributes or operational attributes. User attri-
butes appear in the directory only if they have been explicitly added to it, by the addi-
tion or modification of entries. Operational attributes are created by the server itself.
Examples of operational attributes are createTimeStamp (the time when the entry
was created) and numSubordinates (the number of direct children of the node). If you
specify null for attributes in a search, operational attributes are not returned. Each
operational attribute to be returned must be specified explicitly in the list of attributes.
If you wish to receive operational attributes in addition to all user attributes, use the
constant LDAPConnection.ALL_USER_ATTRS as one of the attributes—for example:

String[] attrs1 = { LDAPConnection.ALL_USER_ATTRS, "createTimeStamp",

"numSubordinates"};

String[] attrs2 = { "cn", "objectclass", "createTimeStamp",

"numSubordinates"};

The String array attrs1 indicates to return all user attributes for this entry, as
well as the two operational attributes createTimeStamp and numSubordinates. The

72 Searching with the SDK

String array attrs2 is used to return the two user attributes cn and objectclass, as
well as the two operational attributes createTimeStamp and numSubordinates.

If you want to do client-side sorting of your result sets, you must include the
attributes by which you are sorting as attributes to be returned by the server. If you
are doing server-side sorting (which we will cover in Chapter 16), including these
attributes is not necessary. Note that attribute names are always case-insensitive, so
{ “objectclass” } is treated the same as “{ “ObjectClass” }” when specifying
attributes to return. Also, you should not count on the server using the same case for
names of attributes it returns.

Search Preferences

You may set certain preferences for a search. These preferences include the amount
of time you wish to allow the server to spend on your search, the maximum number
of records you will accept, and whether the search should wait (block) until all data
is received or should return records as they are available. Search preferences are
specified using the LDAPSearchConstraints class. Commonly used methods of
LDAPSearchConstraints include the following:

• setBatchSize specifies how results are returned during a search. A value
of zero indicates to wait until all results are in before returning them; a
value of one means to return each result as it becomes available. The sec-
ond option is useful if you want to populate a list and not make the user
wait until everything is back before showing some data. On the other
hand, if no data is to be processed until all results have arrived, it is more
efficient to specify zero.

• setHopLimit specifies how many times a returned referral should be fol-
lowed in finding a real entry. A referral is returned when a server does not
contain the data being requested; instead it returns to the caller informa-
tion on where the data resides. It is said to “refer” the caller to another
source for the information.

• setMaxResults specifies the maximum number of results that should be
returned from a search. For no limit on the number of results (unlimited
returns), use a value of zero. Note that if this number is higher than the
maximum number the server has been configured to return, you will get
only the server’s maximum, and an exception will be thrown indicating
that the server size limit was exceeded.

• setReferrals specifies whether or not the SDK should follow referrals
automatically.

Our First Search 73

• setServerTimeLimit specifies the maximum number of seconds for the
server to spend on delivering search results.

All options for searching and other LDAP operations are covered in more detail
in Chapter 14.

The following examples demonstrate setting these options:

// Get the preferences associated with this connection

LDAPSearchConstraints cons = ld.getSearchConstraints();

cons.setBatchSize(1);

cons.setHopLimit (5);

cons.setMaxResults(0);

cons.setReferrals(true);

cons.setServerTimeLimit(5);

Our First Search Program

The following program is a command line-based Java search program. It assumes that
the airius.com sample database was loaded as described in Chapter 4. The program
provides a framework to try out different search filters. Let’s look at the code for
FilterSearch.java:

import netscape.ldap.*;

import java.util.*;

/**

* Simple search program to experiment with filters

*/

public class FilterSearch {

/**

* Do a subtree search using a specified filter

*

* @parm args host, port, authDN, password, baseDN, filter

*/

public static void main(String[] args) {

if (args.length != 6) {

System.out.println("Usage: java FilterSearch " +

"<host> <port> " +

"<authdn> <password> " +

"<baseDN> <filter>");

System.out.println("Example:");

System.out.println(" java FilterSearch " +

74 Searching with the SDK

"localhost 389 " +

"\"\" \"\" " +

"\"o=airius.com\" " +

"\"(|(cn=sam*)(cn=b*))\"");

System.exit(1);

}

The code declares some needed values, including the host name of the machine
and the port on which the LDAP server is listening.

The next section of code sets up our search constraints. The only value we set is
to block on one result at a time. This setting will cause our program to get one value
and allow us to display it while the next value is being retrieved from the server.

String host = args[0];

int port = Integer.parseInt(args[1]);

String authid = args[2];

String authpw = args[3];

String base = args[4];

String filter = args[5];

String[] ATTRS = {"cn","mail","telephoneNumber"};

int status = -1;

LDAPConnection ld = new LDAPConnection();

try {

// Connect to server and authenticate

ld.connect(host, port, authid, authpw);

The getSearchConstraints method returns a copy of the preferences in the
connection. In addition, this program allows connecting with a user DN and pass-
word. An LDAPv3 server will assume an anonymous authentication if no user
DN and password are specified. If communicating with an LDAPv2 server, you
must authenticate, even if binding anonymously (for an anonymous bind, use empty
strings for the user DN and password). We will cover authentication in detail in
Chapter 6.

The program takes as input a search filter and does a search with a scope of
LDAPConnection.SCOPE_SUB. Recall that SCOPE_SUB indicates searching all entries at
all levels under and including the specified base DN. We specify the base DN as the
top of our tree (o=airius.com).

System.out.println("Search filter=" + filter);

LDAPSearchResults res = ld.search(base,

ld.SCOPE_SUB,

filter,

Our First Search 75

ATTRS,

false);

// Loop on results until complete

while (res.hasMoreElements()) {

try {

// Next directory entry

LDAPEntry entry = res.next();

Once the search request is issued, we retrieve each eligible record and send it to
prettyPrint for display on the console, as the following code shows. For now, we will
ignore any referrals returned by the server. Referrals are discussed in detail in Chapter
16. If any errors result in an exception (netscape.ldap.LDAPException), we just print
the error and continue to process any remaining results. All classes in the SDK have a
toString method, which provides useful information about the state of each object.

prettyPrint(entry, ATTRS);

status = 0;

} catch (LDAPReferralException e) {

// Ignore referrals

continue;

} catch (LDAPException e) {

System.out.println(e.toString());

continue;

}

}

} catch(LDAPException e) {

System.out.println(e.toString());

}

The following block disconnects us from the LDAP server.

// Done, so disconnect

if ((ld != null) && ld.isConnected()) {

try {

ld.disconnect();

} catch (LDAPException e) {

System.out.println(e.toString());

}

}

System.exit(status);

}

76 Searching with the SDK

The method prettyPrint takes a returned entry and the array of the attributes
we requested and pulls the values from the search result:

/**

* Print names and values of attributes in an entry

*

* @param entry entry containing attributes

* @param attrs array of attribute names to display

*/

public static void prettyPrint(LDAPEntry entry,

String[] attrs) {

System.out.println("DN: " + entry.getDN());

// Use array to pick attributes. We could have

// enumerated them all using LDAPEntry.getAttributes

// but this gives us control of the display order.

for (int i = 0; i < attrs.length; i++) {

LDAPAttribute attr =

entry.getAttribute(attrs[i]);

if (attr == null) {

System.out.println(attrs[i] +

" not present");

continue;

}

Enumeration enumVals = attr.getStringValues();

// Enumerate on values for this attribute

boolean hasVals = false;

while ((enumVals != null) &&

enumVals.hasMoreElements()) {

String val = (String)enumVals.nextElement();

System.out.println(attrs[i] + ": " + val);

hasVals = true;

}

if (!hasVals) {

System.out.println(attrs[i] +

" has no values");

}

}

System.out.println("——————————");

}

}

The value or values for each attribute are obtained with getStringValues,
which returns an Enumeration. Most LDAP attributes are strings, but some are
binary. Examples of binary attributes are userCertificate;binary and jpegPhoto.

Our First Search 77

It is up to you, the programmer, to specify if you want the values delivered to you
as strings or as binaries. The alternative interface is getBinaryValues. There is no
way to query the directory to determine whether it is appropriate to call getString
Values or getBinaryValues on an attribute. As a programmer you must have some
understanding of the data type represented in a particular attribute. For standard
LDAP attributes the data type is typically a known format that is the same in all appli-
cations.

Data from the directory is always returned in binary or UTF8 format, not in
any other character set (such as latin-1 or shift-jis). Strings are represented internally
in UTF8 format, a form of Unicode, which allows representation of all the world’s
languages. When you call getBinaryValues, the SDK gives you the values exactly as
they are stored in the directory. If you call getStringValues, the SDK attempts to
convert the values into Java String objects, which are in UCS2 (another Unicode
format), before returning them. If the data cannot be converted, which might be the
case with the value of a jpegPhoto attribute, for example, then getStringValues
returns null.

Using Search Filters

You should type in the code or load it from the CD-ROM and compile, using the fol-
lowing command:

javac FilterSearch.java

Let’s execute some searches and see what different filters return:

java FilterSearch localhost 389 "" "" "o=airius.com" "(cn=sam carter)"

java FilterSearch localhost 389 "" "" "o=airius.com" "(cn=Sam Carter)"

These two commands will return the same single record, demonstrating that case
does not matter in a search for the common name (which is defined in the LDAP
server as a case-insensitive attribute):

dn: uid=scarter, ou=People, o=airius.com

cn: Sam Carter

mail: scarter@airius.com

telephoneNumber: +1 408 555 4798

Now let’s try a more complex search filter. The following request will return a
series of results. You will get all members whose names begin with “sam,” “tony,” or
the letter J.

78 Searching with the SDK

java FilterSearch localhost 389 "" "" "o=airius.com"

"(|(cn=sam*)(cn=tony*)(cn=j*))"

The next search uses the telephone number field.

java FilterSearch localhost 389 "" "" "o=airius.com"

"(telephoneNumber=650-9*)"

java FilterSearch localhost 389 "" "" "o=airius.com"

"(telephoneNumber=6509*)"

One complication that arises with telephone numbers in many contexts is that
some people store them as (XXX) XXX-XXXX, others use the syntax XXX-XXX-
XXXX, and some may just store the digits (XXXXXXXXXX). It would be cumber-
some if anyone doing a search had to know how each person had entered the telephone
number. LDAP defines a special telephone number syntax for the telephoneNumber
attribute. To enter a phone number to be searched, you can use any of the three for-
mats described here, and the LDAP server strips the expression down to just the num-
bers before performing the comparison. The LDAP standard document RFC 2252
specifies many different syntaxes for attributes beyond the one most commonly used:
case-insensitive string.

The following search is interesting:

java FilterSearch localhost 389 "" "" "o=airius.com" "(cn~=brian)"

This search uses the “sounds like” operator (see Table 5-1). The following
results will be displayed:

Search filter=(cn~=brian)

DN: uid=bplante, ou=People, o=airius.com

cn: Brian Plante

mail: bplante@airius.com

telephoneNumber: +1 408 555 3550

——————————

DN: uid=jbrown, ou=People, o=airius.com

cn: Judy Brown

mail: jbrown@airius.com

telephoneNumber: +1 408 555 6885

——————————

The results indicate that “Brown” sounds close to “Brian” according to the syn-
tax rules of the server, and of course Brian was found as well.

Using Search Filters 79

Any attribute that is in the directory and is not protected with access control
from searches by an anonymous user is eligible to be searched against, as shown here:

java FilterSearch localhost 389 "" "" "o=airius.com" "(&(

(objectclass=person) (cn=t*) (|(telephoneNumber=>650*) (mail=*))))"

This search expression indicates that we want all records in which (1) the entry
includes the object class person, (2) the first name begins with the letter T, and (3) the
area code of the telephone number is greater than or equal to 650 or the entry has a
mail attribute. Note the syntax for mail: =*. This syntax indicates that we want every
entry that contains a value for this attribute. The asterisk is a presence indicator when
used in isolation on the right-hand side of a filter expression.

Handling Results

A significant aspect of working with LDAP searches is processing the results after issu-
ing the query. The results from the search are returned as an LDAPSearchResults
object, which implements Enumeration. Note that once you iterate over the result set,
it is not available anymore. If you must do multiple passes over the result set, then you
must save the values in a store that is internal to your program.

There are two methods for iteration: nextElement and next. The nextElement
method returns Object, which could be LDAPEntry, LDAPReferralException, or
LDAPException. You are responsible for detecting the type of result (using
instanceof) and taking appropriate action. The next method returns LDAPEntry and
may throw an LDAPReferralException or an LDAPException. We recommend using
next in most cases.

When the next method of LDAPSearchResults is called, there are three possible
consequences. The first is that an entry is returned as an LDAPEntry object. The sec-
ond possibility is that you will be passed a referral (search reference) exception. This
might happen if there is a referral configured in the directory tree you are searching
and you have not set up the SDK to follow referrals automatically. The third possibil-
ity is that you will receive an LDAPException, which might happen if, for example, the
entry specified as the base DN does not exist.

If referrals are followed automatically and if the referral hop limit has not been
exceeded, the LDAP Java classes follow the referral and retrieve the entry for you and
you will never get a referral exception, even when the classes are creating a new con-
nection to the referred-to server in order to retrieve the entry for you. The default set-
ting in the SDK is to not follow referrals automatically, so you might encounter one if
you used the FilterSearch code above. You can indicate that you want automatic refer-
ral handling with the following code:

80 Searching with the SDK

ld = new LDAPConnection();

ld.getSearchConstraints().setReferrals(true);

Referrals are discussed in detail in Chapter 16.
The next method of LDAPSearchResults returns an LDAPEntry object. The

LDAPEntry class contains the following four methods:

1. getDN returns the full distinguished name of the entry as a String (for
example, uid=scarter, ou=People, o=airius.com).

2. getAttribute(String name) takes a String argument of the attribute
name that we are interested in retrieving and returns an object that repre-
sents this attribute. The return type is LDAPAttribute. An optional argu-
ment that identifies a language subtype can also be specified. Language
subtypes (part of the LDAP RFC 2596) can be used to store different values
for a single attribute in an environment where clients specify the language
in which they want to view directory contents. Such attributes include a
semicolon and the language subtype when they are added to the directory.
For example:

givenName;lang-en: John

givenName;lang-fr: Jean

givenName;lang-sp: Juan

If all three values were present in an entry, you could retrieve the third one with
the following code:

LDAPEntry.getAttribute("givenName", "lang-sp");

If the specified attribute does not exist in the entry, null is returned.

3. getAttributeSet returns an LDAPAttributeSet object that represents all
the attributes in this entry. You can then call the getAttributes method of
the LDAPAttributeSet to obtain an Enumeration on all the attributes in
the entry:

LDAPAttributeSet attrs = theEntry.getAttributeSet();

Enumeration enum_attrs = attrs.getAttributes(); //allows iterating

//each one

4. toString returns the entire entry, including all the attributes retrieved, as a
String. This method is useful for debugging and is called by the compiler
when a conversion to String is implied. For example,

Handling Results 81

System.out.println("This is what was returned: " + theEntry);

Once we have the attributes that are present in the entry, we can obtain the
values for these attributes. The LDAPAttribute class has many methods for dealing
with the attribute and its values. The methods most commonly used are the following:

• getStringValues returns an Enumeration of the values for a particular
attribute as Strings. Remember that in LDAP, many attributes may have
more than one value.

• getName returns the name of the attribute (for example, mail or cn).

If we examine the prettyPrint method, we can see the calls needed to extract
the attribute values from an entry:

public static void prettyPrint(LDAPEntry entry,

String[] attrs) {

The following line displays the DN of an entry, which we get by using the getDN
method of LDAPEntry.

System.out.println("DN: "+theEntry.getDN());

Knowing the DN of an entry is very important to an application developer,
because it provides a method to obtain the entry uniquely if we should need to retrieve
it again.

To specify the attributes to be extracted from the entry, the next block of code
uses the attrs array, which contains {"cn","telephoneNumber","mail"}.

// Use array to pick attributes. We could have

// enumerated them all using LDAPEntry.getAttributes,

// but this gives us control of the display order.

for (int i = 0; i < attrs.length; i++) {

LDAPAttribute attr =

entry.getAttribute(attrs[i]);

if (attr == null) {

System.out.println(attrs[i] +

" not present");

continue;

}

Note that we check if any attribute is null for an entry. The value null indicates
that the attribute is not present in this entry. Any attribute that is not mandatory for

82 Searching with the SDK

an entry may be omitted and will then not be returned during a search. Another pop-
ular programming method for handling attributes is just to enumerate over the values
for the entry. We will examine a version of prettyPrint a bit later that will use this
method.

After reaching this point, we know the entry has the attribute, but we do
not know if the attribute has a value. Formally, LDAP does not allow attributes
with no values, but it does allow attributes with a null value. Many attributes in
an LDAP directory can have multiple values. For example, the telephoneNumber
attribute could contain one or more telephone numbers. The following block of
code gets the attribute values and handles multivalue situations by calling
LDAPAttribute.getStringValues, which returns an Enumeration of the values:

Enumeration enumVals = attr.getStringValues();

// Enumerate on values for this attribute

boolean hasVals = false;

while ((enumVals != null) &&

enumVals.hasMoreElements()) {

String val = (String)enumVals.nextElement();

System.out.println(attrs[i] + ": " + val);

hasVals = true;

}

if (!hasVals) {

System.out.println(attrs[i] +

" has no values");

}

Finally, we mark the end of the output for this record:

}

System.out.println("——————————");

}

}

Attributes in Detail

One of the three following conditions will be true for an attribute in an entry: the
attribute is present but has no value (actually a null value), the attribute is not pre-
sent, or the attribute is present and has one or more values:

1. Attribute present in entry with no value. The following abbreviated LDIF
record shows that this entry has the telephoneNumber attribute, but that
the attribute has no value.

Attributes in Detail 83

dn: uid=andy1, ou=People, o=airius.com

ou: People

cn: Andy Jones

...

telephoneNumber:

This is a valid condition, and when prettyPrint executes, it does not print the
attribute in the listing. Code that detects this condition sets the boolean flag hasVals
inside the enumeration loop:

while (enumVals.hasMoreElements()) {

...

hasVals = true;

The output from prettyPrint is as follows:

Search filter=(uid=andy*)

DN: uid=andy1, ou=People, o=airius.com

cn: Andy James

mail: andy1@airius.com

telephoneNumber HAS NO VALUES

2. Attribute not present. As indicated by the following LDIF record, if the
attribute is not mandatory for any of the object classes of the entry, then it
may or may not be present.

dn: uid=andy2, ou=People, o=airius.com

ou: People

objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

cn: Andy James

The corresponding code in prettyPrint that handles this situation is as follows:

if (attr == null) {

System.out.println(ATTRS[i] + " NOT PRESENT");

continue;

}

Keep in mind that just because you requested a particular attribute does not
mean that every entry will contain the attribute. If we had used the enumerated set

84 Searching with the SDK

returned by getAttributes, the telephoneNumber attribute would not have been in
the enumeration. If using the enumeration, your program would need to track which
attributes were returned for each entry. Otherwise, use the getAttribute method to
retrieve a specific attribute; if null is returned, then the attribute is not present for this
particular entry.

The output from prettyPrint is as follows:

DN: uid=andy2, ou=People, o=airius.com

cn: Andy Jones

mail: andy2@airius.com

telephoneNumber NOT PRESENT

3. Attribute present and has one or more values. This condition is the most
common for most searches. The following LDIF record has multiple values
for the telephoneNumber attribute. Often programmers are interested in
only one value, but they must be prepared for the occurrence of multiple
values.

dn: uid=andy3, ou=People, o=airius.com

ou: People

...

cn: Andy Stevens

telephoneNumber: 650-555-1212

telephoneNumber: 650-555-1213

The output from prettyPrint is as follows:

DN: uid=andy3, ou=People, o=airius.com

cn: Andy Stevens

mail: andy3@airius.com

telephoneNumber: 650-555-1212

telephoneNumber: 650-555-1213

I Want Only One Record and I Have the DN

The DN uniquely identifies a single entry in the directory. In some situations you have
the DN (for example, because you saved it or because information is provided to
allow you to build it), and you want to retrieve the single record corresponding to the
DN. The read method of the LDAPConnection class provides this functionality.
Although not as flexible as issuing a full search, this method provides the benefit of
retrieving the single uniquely identified record with few parameters required. Within

I Want Only One Record and I Have the DN 85

the SDK the method is just a search with the scope set to SCOPE_BASE and the filter to
objectclass=*.

The following code is a modification of FilterSearch that takes a DN as argu-
ment instead of a search base and filter.

public class EntryRead {

/**

* Read an entry from the directory and display the contents

*

* @param args host, port, authDN, password, dn

*/

public static void main(String[] args) {

if (args.length != 5) {

System.out.println("Usage: java EntryRead " +

"<host> <port> " +

"<authdn> <password> " +

"<dn>");

System.out.println("Example:");

System.out.println(" java EntryRead " +

"localhost 389 " +

"\"\" \"\" " +

"\"uid=scarter, ou=People, " +

"o=airius.com\"");

System.exit(1);

}

String host = args[0];

int port = Integer.parseInt(args[1]);

String authid = args[2];

String authpw = args[3];

String base = args[4];

String[] ATTRS = { "cn","mail","telephoneNumber" };

int status = -1;

LDAPConnection ld = new LDAPConnection();

try {

// Connect to server and authenticate

ld.connect(host, port, authid, authpw);

LDAPEntry entry = ld.read(base, ATTRS);

prettyPrint(entry, ATTRS);

86 Searching with the SDK

status = 0;

} catch (LDAPReferralException e) {

// Ignore referrals

} catch (LDAPException e) {

System.out.println(e.toString());

}

// Done, so disconnect

if ((ld != null) && ld.isConnected()) {

try {

ld.disconnect();

} catch (LDAPException e) {

System.out.println(e.toString());

}

}

System.exit(status);

}

}

The method prettyPrint here is the same as in FilterSearch.
Executing the program with the following command:

java EntryRead localhost 389 "" "" "uid=scarter, ou=People, o=airius.com"

will result in the following output:

DN: uid=scarter, ou=People, o=airius.com

cn: Sam Carter

mail: scarter@airius.com

telephoneNumber: +1 408 555 4798

Searching and Comparing

The LDAP SDK allows you to compare a value in memory to the value of an attribute
of an entry without actually retrieving the entry. This is called a compare operation. In
many ways a compare can be simulated using a search by setting the scope of the
search to SCOPE_BASE and providing a search filter with which the value can be com-
pared; if an entry is returned, the compare operation was successful. A compare, how-
ever, may improve performance because the return data from the LDAP server is a
small packet that says either that the value is the same or that it is different.

Let’s examine a small piece of code to compare a specific record and see if the l
attribute (the LDAP attribute for location) has the value Santa Clara. The following
code is abbreviated to show simply how to call the compare method of LDAPConnection.

Searching and Comparing 87

String ENTRYDN = "uid=scarter, ou=People, o=Airius.com";

LDAPAttribute attr = new LDAPAttribute("l","Santa Clara");

try {

LDAPConnection ld = new LDAPConnection();

ld.connect(HOST, PORT); //connect to server

boolean ok = ld.compare(ENTRYDN, attr);

if (ok) {

System.out.println("Values matched!");

} else {

System.out.println("No Match!");

}

} catch (LDAPException e) {

System.out.println("Error: " + e.toString());

}

The compare method takes a DN, an LDAPAttribute object representing the
attribute you wish to compare and the value to compare, and an optional
LDAPSearchConstraints object. The method returns true if the entry has the
attribute and specified value and false if the entry does not have the value or the
attribute. An exception is thrown if the entry does not exist.

More on Filters

In the previous sections we spent a great deal of time on filters and the syntax to build
them. Although filters are incredibly powerful, the power is magnified tenfold if we can
build them dynamically (at run time) using templates. Take the case of providing a user
with a text field in which to type some search data. How can we form a search using
this data? The user might type in a phone number, or she might type in “tony.” We
should choose a search filter that includes sn in one case but telephoneNumber in the
other case. It would also be wasteful to use a search of the form (|(cn=searchstring)
(telephoneNumber=searchstring)), since the server is comparing against extra fields
that are not needed and it might return unwanted results.

A filter configuration file allows building rules that can present the filter based on
input at run time. The filter configuration file has the following format:

Tag

pattern delimiters filter1-1 description (optional scope)

filter1-n description (optional scope)

pattern2 delimiters filter2-1 description (optional scope)

88 Searching with the SDK

As an example, let’s look at a filter configuration file we will be using:

More on Filters 89

"search"

"=" " " "%v" "arbitrary"

"^[0-9][0-9-]*$" " " "(telephoneNumber=*%v*)" "phone number"

"@" " " "(mail=%v)" "email address"

"(mail=%v*)" "start of email"

"^.[. _].*" ". _" "(cn=%v1* %v2-)" "first initial"

".*[. _].$" ". _" "(cn=%v1-*)" "last initial"

"[. _]" ". _" "(|(sn=%v1-)(cn=%v1-))" "exact"

"(|(sn~=%v1-)(cn~=%v1-))" "approximate"

"*" "." "(|(cn=%v1)(sn=%v1)(uid=%v1))" "exact"

"(|(cn~=%v1)(sn~=%v1))" "approximate"

The tag is used to identify a block of patterns, allowing the mixing of multiple
patterns in a single filter configuration file. The filter configuration file shown here has
only one tag, named search. The patterns are regular expressions that are applied to
the search string entered by the user. The first pattern—"="—indicates that if the
search string entered by the user contains "=" anywhere, then the designated filter, in
this case %v, should be applied.

Filters are built using the text entered by the user and static text from the config-
uration file. The filter %v indicates a variable substitution. By itself, %v means the
whole string entered by the user. If we used the template (mail=%v) and the user
entered “tony@abc.com,” a filter string of (mail=tony@abc.com) would be built.

The filter %v has a series of different modifiers. Assume for the examples shown
in Table 5-2 that the search string is “this is a test.” Words are determined and split on
the basis of the characters entered in the second column of the configuration file—the
delimiter column.

Returning to our configuration file example, if the user enters a string of the
form “cn=tony” (in the pattern "="), then the first rule will be used: return a filter con-
sisting of the whole string entered by the user. This pattern allows advanced users to
directly build their own filters at run time. The next pattern—^[0-9][0-9-]*$—is
used to detect if a phone number has been entered. The character ̂ indicates to start at

the beginning and use the filter if the search string contains one or more digits: if the
user types one or more digits, then return the filter (telephoneNumber=*digits*).

The following Java command-line program will allow you to try out filters and
search commands. The program presents all the filters that match a search string and
builds a filter expression that can be issued to an LDAP search.

import netscape.ldap.*;

import netscape.ldap.util.*;

import java.util.*;

// Class to experiment with filter configuration files

public class CreateFilter {

public static void main(String[] args) {

if (args.length != 2) {

System.out.println("Usage: java CreateFilter " +

"<filterfile> <search " +

"expression> ");

System.out.println("Example:");

System.out.println(" java CreateFilter " +

"tryfilt.conf \"*peter*\"");

System.exit(1);

}

LDAPFilterDescriptor filterDesc = null;

LDAPFilterList filtlist = null;

String srchfilter = "";

int numfilts = 0;

90 Searching with the SDK

TABLE 5-2. “This is a test” search.

SYNTAX ENTITY REPRESENTED SAMPLE RESULT

%v Whole value entered %v "this is a test"

%vN Word N %v2 "is"

%vN- Word N and all words following %v2- "is a test"

%vN-M Words N through M %v3-4 "a test"

%v$ Last word %v$ "test"

try {

// Read a filter configuration file

filterDesc = new LDAPFilterDescriptor(args[0]);

} catch (Exception e) {

System.out.println("Cannot load file: " +

args[0]);

System.exit(0);

}

try {

// Construct filters from the parsed configuration

// file and the search expression from the command

// line

filtlist =

filterDesc.getFilters("search", args[1]);

numfilts = filtlist.numFilters();

if (numfilts > 1) {

srchfilter += "(|";

}

// Iterate through constructed expressions

while (filtlist.hasMoreElements()) {

LDAPFilter fline = filtlist.next();

String fstr = fline.getFilter();

System.out.println("Filter = " + fstr);

// Concatenate the individual matches

srchfilter += fstr;

}

if (numfilts > 1) {

srchfilter += ")";

}

} catch (Exception e) {

System.out.println("Filter error: " +

e.toString());

}

System.out.println("Search filter = " +

srchfilter);

}

}

Some sample runs and corresponding output follow:

java CreateFilter tryfilt.conf 213

filter=(telephoneNumber=*213*)

search string=(|(telephoneNumber=*213*))

More on Filters 91

The above response indicates that a number was detected and that the filter for
telephoneNumber was built. The value typed by the user—213—was inserted into a
search string. Note that the program builds a search string by prepending it with "(|"
and appending it with ")". The search string is built in this way to handle the case in
which multiple filters may be returned, as in the next example:

java CreateFilter tryfilt.conf tony

filter=(|(cn=tony)(sn=tony)(uid=tony))

filter=(|(cn~=tony)(sn~=tony))

search string=(|(|(cn=tony)(sn=tony)(uid=tony))(|(cn~=tony)

(sn~=tony)))

Let’s focus on the code used to handle the input and return these filters. Before
anything can occur with a filter configuration, an LDAPFilterDescriptor object
needs to be created. The constructor for an LDAPFilterDescriptor can take a file
name, a StringBuffer containing the filter configuration information, or a URL to
the filter file (allowing the file to exist anywhere on the Web).

The following instruction will read the file.

LDAPFilterDescriptor filtdesc = new LDAPFilterDescriptor("filename");

The next step is to call the getFilters method, passing in your search string and
the tag for the section to use as an example:

LDAPFilterList filtlist = filltdesc.getFilters("tag","search string");

This method will return an enumerated list that can be iterated over to retrieve
each filter and other information.

The following code fragment shows how to enumerate the filters.

while (filtlist.hasMoreElements()) {

LDAPFilter fline = filtlist.next();

System.out.println("description:"+ fline.getDescription());

System.out.println("filter="+ fline.getFilter());

}

The primary information we need to retrieve is the filter, which is obtained with
the getFilter method.

There are many advantages to using filter configuration files. They eliminate the
need to predefine searches in the code, and they provide flexibility at run time for
dynamically tailoring a query based on information provided by a user. The CD-
ROM for this book contains a graphical Java application, a screen shot of which is

92 Searching with the SDK

shown in Figure 5-5. The application takes a search string entered by a user and issues
a query against the directory. The results are displayed in a scrollable text box. The
code demonstrates use of a filter configuration file, the searching functions of the
LDAP SDK, and some AWT (Abstract Windows Toolkit) user interface code as well.
The code is presented here for review, and it will be extended in the next section in our
discussion of client-side sorting.

import java.lang.*;

import java.awt.*;

import java.awt.event.*;

import netscape.ldap.*;

import netscape.ldap.util.*;

import java.util.*;

/**

* Frame to select filters from a filter file and do searches

*/

public class FilterSearchDialog extends Frame {

/**

* Launch a frame to do searches using a filter file

*

* @param args host, port, authDN, password, base

*/

public static void main(String[] args) {

if ((args.length != 4) &&

(args.length != 6)) {

System.out.println("Usage: java " +

"FilterSearchDialog " +

"<host> <port> " +

"<filterfile> <baseDN> " +

"[<authdn> <password>]");

System.out.println("Example:");

System.out.println(" java " +

"FilterSearchDialog " +

"localhost 389 " +

"filter.conf \"o=airius.com\"");

System.exit(1);

}

String host = args[0];

int port = Integer.parseInt(args[1]);

String conf = args[2];

More on Filters 93

String base = args[3];

String authid = "";

String authpw = "";

if (args.length > 4) {

authid = args[4];

authpw = args[5];

}

Frame f = new FilterSearchDialog(

"Graphical LDAP Search", host, port,

authid, authpw, conf, base);

f.setSize(430,280);

f.show();

}

/**

* Standard Frame constructor, plus connection parameters

*

* @param title window title

* @param host host to search

* @param port port number of server

* @param authid DN to authenticate as (may be "")

* @param authpw password for authentication (may be "")

* @param conf name of filter configuration file

* @param base base DN for subtree search

*/

public FilterSearchDialog(String title,

String host, int port,

String authdn, String authpw,

String conf, String base) {

super(title);

this.host = host;

this.port = port;

this.authdn = authdn;

this.authpw = authpw;

this.conf = conf;

this.base = base;

setLayout(null);

The following block of code handles disconnecting from the LDAP server when
the user closes the window.

94 Searching with the SDK

this.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

// Disconnect from server

if ((ld != null) && ld.isConnected()) {

try {

ld.disconnect();

} catch (LDAPException le) {

System.out.println(le.toString());

}

}

System.exit(0);

}

});

The following code creates the GUI components and places them on the frame.

Label lbl1 = new Label("Search for:");

lbl1.setBounds(10,36,75,26);

add(lbl1);

srch = new TextField();

Font font = new Font("Monospaced",Font.PLAIN,12);

srch.setFont(font);

srch.setBounds(90,36,230,26);

add(srch);

searchb = new Button("Search");

searchb.setBounds(340,36,80,26);

add(searchb);

output = new TextArea(12,3);

output.setFont(font);

output.setEditable(false);

output.setBounds(10,70,410,200);

add(output);

An action is associated with the Search button:

searchb.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

String srchstr = srch.getText();

// If there is a search string, do a search

if (srchstr.length() > 0) {

searchLDAP(srchstr);

}

More on Filters 95

}

});

The following code handles reading the filter description file and creating a filter
descriptor. If the file cannot be located, the program aborts, reporting an error to the
console.

// Read the filter description file

// If not found, exit and report error to the console

try {

filterDesc =

new LDAPFilterDescriptor(conf);

} catch (Exception e) {

System.out.println("Cannot load " + conf +

" file");

System.out.println("Exiting...");

System.exit(1) ;

}

}

The searchLDAP method takes the search string from the user and builds a filter
with the aid of the filter descriptor. Once the proper search string has been built, an
LDAP search is executed:

protected void searchLDAP(String srchString) {

int status = -1;

String appendmsg = "";

LDAPSearchResults res = null;

LDAPFilterList filtlist = null;

String srchfilter = "(|";

// Check if we are connected first

if ((ld == null) || (!ld.isConnected())) {

connectServer();

}

// Use the filter descriptor to build a

// search filter

try {

filtlist =

filterDesc.getFilters("search", srchString);

while (filtlist.hasMoreElements()) {

LDAPFilter fline = filtlist.next();

// The actual filter is next

96 Searching with the SDK

String fstr = fline.getFilter();

srchfilter += fstr;

}

srchfilter += ")";

if (srchfilter.length() == 3) {

// No filters found

return;

}

// Now do the search

res = ld.search(base,

scope,

srchfilter,

ATTRS,

false);

// Display search filter

String outres = "Filter=" + srchfilter + "\n" +

"———————\n";

// Loop on results building each line

while (res.hasMoreElements()) {

try {

// Next directory entry

LDAPEntry entry = res.next();

outres += format(entry);

status = 0;

} catch (LDAPReferralException e) {

// Ignore referrals

continue;

} catch (LDAPException le) {

int rc = le.getLDAPResultCode();

if (rc == le.SIZE_LIMIT_EXCEEDED) {

appendmsg =

"\nExceeded size limit";

} else if (rc ==

le.TIME_LIMIT_EXCEEDED) {

appendmsg =

"\nExceeded time limit";

} else {

appendmsg = le.toString();

}

}

}

More on Filters 97

outres += appendmsg;

output.setText(outres); // Display in text area

} catch(Exception e) {

System.out.println("Search error: " +

e.toString());

}

}

The connectServer method is called whenever we need to establish a connec-
tion to the LDAP server:

protected void connectServer() {

// Connect to the LDAP server

if ((ld == null) || (!ld.isConnected())) {

try {

ld = new LDAPConnection();

ld.connect(host, port, authdn, authpw);

} catch(LDAPException e) {

System.out.println("Connect error: " +

e.toString());

System.exit(1);

}

}

}

We are binding with the specified command-line credential information. If none is
supplied, we simply bind anonymously.

The following two methods return a display string for the text box. They handle
situations in which no value exists by substituting a dash for the value. The format
method returns a String with each matching entry in tab-delimited format. The
returned String is directly appended to the text box by the calling method.

/**

* Format a string with attribute values from an entry,

* separated by tabs

*

* @param entry LDAP entry containing cn, telephoneNumber,

* and mail

*/

public String format(LDAPEntry entry) {

String outstr = "";

// Get the data - hard-coded attribute names here!

String name = getValue(entry, "cn");

98 Searching with the SDK

String phone = getValue(entry, "telephoneNumber");

String email = getValue(entry, "mail");

// Limit the full name to 15 characters

if (name.length() > 15) {

name = name.substring(0, 15);

}

outstr = name + "\t" + phone + "\t" + email + "\n";

return outstr;

}

/**

* Get first string value of an attribute from an entry

* or ‘-’ if not present

*

* @param entry LDAP entry containing the attribute

* @param attrName name of attribute to retrieve

* @return first value of attribute or ‘-’

*/

protected String getValue(LDAPEntry entry,

String attrName) {

LDAPAttribute attr = entry.getAttribute(attrName);

if (attr == null) {

return "-";

}

Enumeration enumVals = attr.getStringValues();

// Enumerate on values for this attribute

boolean hasVals = false;

if ((enumVals == null) ||

!enumVals.hasMoreElements()) {

return "-";

}

return (String)enumVals.nextElement();

}

private LDAPConnection ld = null;

private String host;

private int port;

private String conf;

private String base;

private String authdn;

private String authpw;

More on Filters 99

private int scope = LDAPConnection.SCOPE_SUB;

private TextArea output;

private TextField srch;

private Button searchb;

// Attributes to display for each entry found

private static final String[] ATTRS =

{"cn","mail","telephoneNumber"};

// Filter configuration file object

private LDAPFilterDescriptor filterDesc = null;

}

This program is useful as an example of working with the results from a search
and presenting them in a graphical environment. When the program is first started, a
Connect button is displayed. Clicking this button will open a connection to the LDAP
server and rename the button as Search. After a search string is entered, clicking the
Search button will cause the search string to be parsed using a filter configuration file,
and then the search will be submitted to the server. Search filter configurations provide
other functionality as well, such as filter prefixing and suffixing.

Check the reference section of this book for details on these features. It should be
evident that this functionality can make your code more dynamic in response to user
input.

To execute the program, use the following command-line option:

java FilterSearchDialog localhost 389 filter.conf "o=airius.com"

This command will present a search screen, where you may issue searches against
the directory. Issuing a search of 555 against the sample data file included on the
CD-ROM that accompanies this book will result in the display shown in Figure 5-5.

Sorting

We now turn our attention to sorting the results returned from the server. As you may
have noticed, the LDAP server does not always return results in a natural order.
Human beings generally prefer to have information ordered so that it can be reviewed
or browsed easily. The LDAP SDK provides two methods for sorting results: client-
side sorting and server-side sorting. Server-side sorting is an LDAPv3 enhancement
and is supported on many servers, including Netscape Directory Server. We will cover
server-side sorting in detail in Chapter 16. Client-side sorting is the option to retrieve
the data and sort it on the client machine before working with the results.

Client-side sorting has a couple of restrictions. First, the attributes on which you
wish to sort must be among the attributes you request in your search results. You can-

100 Searching with the SDK

not, for instance, request just the uid and telephoneNumber for your search, and then
try to sort by cn. Second, in client-side sorting, the sort will block until all records
have been retrieved from the server. With these restrictions in mind, let’s look at how
we can add client-side sorting to the FilterSearchDialog program.

The client-side sort routine needs two arrays or two single values that indicate
the attributes to sort and a flag for ascending or descending order. The following code
snippet shows the modifications to the FilterSearchDialog code that are needed to
sort by cn in ascending order.

res = ld.search(BASE, SCOPE, srchfilter, ATTRS, false;

// Since we are sorting by only one field, we do not need an array

res.sort (new LDAPCompareAttrNames("cn",true));

The LDAPCompareAttrNames constructor creates a comparator that looks at
LDAP string values in the entries for sorting purposes. The LDAPCompareAttrNames
constructor also takes a form with two arrays. For instance, to sort on both the cn and
telephoneNumber attributes, the code would look like this:

String[] sortattr = {"cn", "telephoneNumber"};

boolean[] ascend = {true, true};

res.sort new (LDAPCompareAttrNames(sortattr,ascend));

Authenticating for Searches 101

FIGURE 5-5. Results of sample query with FilterSearchDialog.

The output from FilterSearchDialogSort (the sorting version of Filter
SearchDialog) with the same search as earlier looks like Figure 5-6.

Authenticating for Searches

None of the examples presented so far in this chapter have involved authenticating to
the directory. All connections have been anonymous (not using a DN or password).
Most LDAP directories are configured to allow anonymous searching of at least some of
the information in the system, but some attributes may have access control configured to
prevent access. For instance, the corporate directory at Netscape Communications Cor-
poration does not allow anonymous connections to retrieve the JPEG photo of an
employee. Only security personnel or the employee corresponding to the entry may
retrieve this attribute. The same usually is true for the userPassword attribute as well.

If you ask for one of the required or commonly used attributes and it is not
returned, more than likely access control has been configured to prevent you from
retrieving it. We will cover authenticating to the directory in Chapter 6, when we will
be modifying data, but to peek ahead—for those who need to authenticate for a
search or to retrieve a specific attribute—the additional method to call is shown here
(indicated by bold):

102 Searching with the SDK

FIGURE 5-6. Results with client-side sorting.

ld = new LDAPConnection();

ld.connect(HOST, PORT); // Connect to server

ld.authenticate(3, authid, authpw); // Bind by DN and password

The connect and authenticate steps can be combined:

ld.connect(3, HOST, PORT, authid, authpw);

The optional first numerical parameter is the requested LDAP protocol
version. You must specify 3 to take advantage of controls and other new features
of LDAPv3. On the other hand, if the server supports only LDAPv2 and you spec-
ify 3 when authenticating, the server will refuse the connection. The default in the
SDK is 2.

The value used to authenticate to the directory must be a DN of an existing
entry. One DN in the server—the root DN (like the root user on UNIX)—has unlim-
ited privileges and does not correspond to a physical entry. In Netscape Directory
Server, the default root DN is cn=Directory Manager. The root DN is also often
called the Directory Manager.

Typically the DN used to authenticate will be that of a user needing to perform
an operation on his own entry. For example, if Sam Carter wanted to bind and
retrieve his photograph, he would authenticate as follows:

String bindDN = "uid=scarter, ou=People, o=airius.com";

// Bind password is passed to us

if (bindpwd.length() > 0) {

ld.authenticate(bindDN,bindpwd);

}

When authenticating, always validate that the password is not a blank string
("") or null. If a blank string is passed as the password, there will be no exception
thrown to indicate an invalid authentication. Instead the operation will succeed but
the connection will be anonymous. Later, when the program attempts to modify an
entry, an exception may be thrown because anonymous users do not have the right to
make modifications. We will cover authenticating in detail in Chapter 6.

Improving Directory Search Performance

As an application developer you can increase the performance of your search opera-
tions, reduce memory usage, and reduce the load on the server by observing a few
rules of thumb:

Improving Directory Search Performance 103

• Use indexed attributes

• Specify an object class in your filter to get only entries of the desired type

• Retrieve only attributes you need

• Keep the DN handy

• Use compare where it makes sense

Use Indexed Attributes

The most significant way to get good performance from the directory when searching is
to use only indexed attributes in your search requests. As a programmer you may need
to work with your directory administrator to determine which attributes are indexed
or to request that additional attributes be indexed. If you find you need to perform
searches frequently on unindexed attributes, then it may make sense to index the par-
ticular attributes. With Netscape Directory Server, you can view the access logs and
determine if searches are occurring against unindexed fields. The following is a sample
of the access log. The text “notes=U” marks a search against an unindexed attribute.

[03/May/1999:09:24:29 -0400] conn=19 op=6 SRCH

base="ou=tony.home,o=NetscapeRoot" scope=2 filter="(objectclass=NsHost)"

.

.

[03/May/1999:09:24:29 -0400] conn=19 op=6 RESULT err=0 tag=101 nentries=1

etime=0 notes=U

Specify an Object Class to Get Only Entries
of the Desired Type

If your application is working with particular types of records (for example, person
records), it makes sense to include in your filter the object class you need. For
instance, for all the records of people whose names begin with “barbara,” use a filter
such as (&(objectclass=person)(cn=Barbara*)). You can use a filter configuration
file to set up a tag for finding entries that represent people. Include the filter compo-
nent objectclass=person in the tag. The result may be that fewer records are
returned to the client, and consequently that performance is improved, particularly if
your directory stores many entries for objects other than people.

Retrieve Only Attributes You Need

Many programmers pass null as the attributes field for a search operation. The
result is that all attributes for the indicated records are returned. For a large potential

104 Searching with the SDK

result set, the performance of both server and client can be severely affected. If you
need only the name and phone number, then specify these in your search request. Keep
in mind that if you are doing client-side sorting, you will also need to request the
attributes by which you wish to sort.

Keep the DN Handy

If you are going to do anything else with a retrieved record, keep the DN. The DN can
be used to find a record uniquely within the directory without invoking a new search.
For instance, suppose you are displaying a list of names and want to allow the user to
click on a name and get all the information about that person. Store the DN for each
record in a nonvisible variable and use it to look up the record when the user clicks on it.

Use compare Where It Makes Sense

If you are interested only in whether an attribute exists and has a certain value, use
compare rather than search. A compare is a lightweight transaction with very little
client and server overhead. When entries are returned, access control must be evalu-
ated for each attribute, and client memory usage increases according to the size of the
entries returned.

Conclusion

The major use of an LDAP directory is to retrieve information. In this chapter we have
presented samples of code to direct searches to LDAP directories. We have also cov-
ered the details of processing the results, along with many tips to make the most effi-
cient use of the SDK. One of the key pieces of information to maintain during
processing is the DN of the retrieved records. With this information, any other data
can be obtained rapidly from the directory. We have also included in this chapter a
discussion of techniques to minimize impact on the directory, the client application,
and the network through efficient use of the SDK.

Conclusion 105

Chapter 5 described various methods for retrieving and processing data under pro-
gram control. This chapter will focus on placing data into the directory and

manipulating it there, including entering new data, altering existing data, or deleting
data that is no longer necessary.

In many cases software may need to update or alter the directory; for example, a
user has changed her home phone number, a reorganization has caused the manager
of a series of employees to change, or a user wants to alter her password. All these
instances require the directory to be updated at some point. Another area of rapid
growth is storing extranet or Web account preferences and selections in the directory.
Once this information is stored, whenever the user returns she is greeted with a famil-
iar environment—her own.

We will concentrate in this chapter on the code that is necessary to perform all
these operations. By “updating” the directory, we mean adding new entries, modifying
existing entries, or completely deleting an entire entry. We will also discuss the use of
groups in the directory for simplifying access control and implementing mailing lists.

Before We Can Update: Authentication Basics

Before we can modify anything in an LDAP directory, generally we must authenticate.
The directory uses this authentication information to determine whether we are
authorized to make the particular changes we are requesting. Chapter 7 will cover
authentication in detail.

Many LDAP servers have one identity that is a privileged account and can per-
form any operation. By default, this user is cn=Directory Manager for Netscape
Directory Server. Other directory servers have their own designated privileged user or

Creating and
Maintaining
Information

107

C H A P T E R 6

users. Typically this privileged account may request an unlimited number of entries
returned on a search and is not affected by server-side settings such as the maximum
number of results to return. Sometimes a particular operation may need to be per-
formed as the Directory Manager because no other user has sufficient global rights. In
this chapter we will be using simple authentication: passing a DN and password. If
you do not want unencrypted passwords to be transmitted over the network, then you
should use SSL or a SASL mechanism to secure the communications.

With simple authentication you must supply a full DN and a valid password, as
the following code fragment illustrates.

LDAPConnection ld = new LDAPConnection();

try {

ld.connect(HOST, PORT);

ld.authenticate("cn=Directory Manager", "PASSWORD");

} catch (LDAPException e) {

}

If a blank password is passed, the authentication will succeed but it will be an
anonymous authentication (authenticating as the anonymous user). Although the
authentication process itself will not throw an error, anytime an operation that
requires privileges is requested, an exception will be thrown. When your program
accepts passwords as input, you should check that the supplied password is not blank.
If the program requires authentication other than as anonymous, you should reject a
DN or password that is blank.

You may issue another authenticate operation against an existing connection.
The operation allows for changing authentication information after a connection has
been established.

Finally, the user ID must be specified as a full DN. Users usually do not know the
full DNs of their user IDs, so typically a search must be performed anonymously (or
as a special user) to locate the DN corresponding to the user ID before the user can
authenticate to the directory. Chapter 7 will provide sample code and discuss authen-
tication in detail; the following code just provides the highlights of authentication
with a user-supplied user ID and password.

import netscape.ldap.*;

import java.util.*;

/**

* Given a uid and password, find the corresponding entry

* and authenticate

*/

public class UidLogin {

108 Creating and Maintaining Information

/**

* Search for the uid and then authenticate with the

* password

*

* @param args host, port, uid, password

*/

public static void main(String[] args) {

if (args.length != 5) {

System.out.println("Usage: java UidLogin " +

"<host> <port> <baseDN> " +

"<uid> <password>");

System.out.println("Example:");

System.out.println(" java UidLogin " +

"localhost 389 " +

"\"o=airius.com\" " +

"cathyp password");

System.exit(1);

}

String host = args[0];

int port = Integer.parseInt(args[1]);

String baseDN = args[2];

String authid = args[3];

String authpw = args[4];

if ((authid.length() == 0) ||

(authpw.length() == 0) ||

(authid.indexOf(‘*’) >= 0)) {

System.out.println("You must supply a uid and " +

"password");

System.exit(1);

}

boolean authed = false;

LDAPConnection ld = new LDAPConnection();

try {

// Connect to server anonymously

ld.connect(host, port);

// Search for entries with a matching uid

LDAPSearchConstraints cons =

ld.getSearchConstraints();

cons.setBatchSize(0);

Before We Can Update: Authentication Basis 109

LDAPSearchResults results =

ld.search(baseDN,

ld.SCOPE_SUB,

"uid=" + authid,

new String[] {ld.NO_ATTRS},

false,

cons);

// There should be exactly one match

if (!results.hasMoreElements()) {

System.out.println("uid not found");

} else if (results.getCount() > 1) {

System.out.println("More than one matching " +

"uid");

} else {

LDAPEntry entry = results.next();

String authDN = entry.getDN();

System.out.println("uid maps to: " +

authDN);

ld.authenticate(authDN, authpw);

authed = true;

}

} catch(LDAPException e) {

System.out.println(e.toString());

}

// Done, so disconnect

if ((ld != null) && ld.isConnected()) {

try {

ld.disconnect();

} catch (LDAPException e) {

System.out.println(e.toString());

}

}

int rc = 0;

if (authed) {

System.out.println("Authenticated!");

} else {

System.out.println("Not Authenticated!");

rc = 1;

}

System.exit(rc);

}

}

110 Creating and Maintaining Information

Adding an Entry

You can add new entries to the directory by defining a DN for the entry, creating the
attributes for the entry, and requesting that the LDAP server add the new entry.

Summary of Steps to Add a New Entry

Creating an entry in the directory requires the following steps:

1. Instantiate an LDAPAttribute object for each attribute that forms the
entry.

2. Instantiate an LDAPAttributeSet object and use the add method to add
each LDAPAttribute object from step 1.

3. Instantiate an LDAPEntry object that specifies the new DN and the
LDAPAttributeSet from step 2.

4. Call the LDAPConnection.add method with the LDAPEntry object from
step 3.

The LDAPAttribute class represents an attribute. An LDAPAttribute is used to
build each attribute and the corresponding values for the entry. The following code frag-
ment shows calls to create an LDAPAttribute for a single-valued attribute, a multival-
ued attribute, and an attribute that contains binary data.

LDAPAttribute attr1 = new LDAPAttribute("cn", "Babs Jensen");

String attrvals = { "Babs Jensen", "Barbara Jensen" };

LDAPAttribute attr2 = new LDAPAttribute("cn", attrvals);

byte[] jpeg_data = readImage("myimage.jpg");

LDAPAttribute attr3 = new LDAPAttribute("jpegPhoto", jpeg_data);

Once the attributes have been built, they are put into an LDAPAttributeSet
using the add method on the LDAPAttributeSet object. An LDAPEntry object is then
created with the LDAPAttributeSet and the String representing the DN. Figure 6-1
shows what is contained in an LDAPEntry object.

This LDAPEntry is passed to the LDAPConnection.add method, as illustrated in
the following code, which adds a new person entry to the directory.

LDAPAttributeSet attrs = new LDAPAttributeSet();

String objclass[] = { "top", "person", "organizationalPerson",

Adding an Entry 111

"inetOrgPerson" };

attrs.add(new LDAPAttribute("objectclass", objclass));

attrs.add(new LDAPAttribute("cn", "Babs Jensen"));

attrs.add(new LDAPAttribute("sn", "Jensen"));

attrs.add(new LDAPAttribute("mail", "bjensen@airius.com"));

String dn = "uid=bjensen,ou=People,o=airius.com";

LDAPEntry theEntry = new LDAPEntry(dn, attrs);

try {

// The add may fail for lack of privileges or other reasons

ld.add(theEntry);

} catch (LDAPException e) {

}

You must include the required attributes for the specified object class as part of
the entry. For person and its derived object classes, the required attributes are
objectclass, sn, and cn. In the example just given, we are also adding an optional
attribute—mail.

Note that not only inetOrgPerson should be specified as object class, but also its
ancestors (top, person, and organizationalPerson). You must also be authenticated
with credentials that allow adding entries to the directory at the point specified by the
DN. In this case, you must have the right to add child entries to ou=People, o=air-
ius.com. Finally, the parent entry—ou=People, o=airius.com in this case—must exist.

112 Creating and Maintaining Information

LDAPAttribute

LDAPAttributeSet

LDAPEntry

Distinguished name

LDAPAttribute

LDAPAttribute

FIGURE 6-1. Contents of an
LDAPEntry object.

Inserting Records from a Data File

Often data from different systems needs to be imported into an LDAP directory.
Although LDIF is the primary means of importing data files, Java’s StringTokenizer
class and the SDK make it easy to import custom files. The program that follows reads
a comma-separated list of values from a file, builds an LDAP entry for each line, and
inserts it into the directory.

The file to be imported is of the following format:

jdoe,John,Doe,650-555-1212

tsmith,Tom,Smith,650-555-1213

tmartin,Tim,Martin,650-555-1214

swright,Sally,Wright,650-555-1215

The program can be customized for other input formats.

import java.util.*;

import java.io.*;

import netscape.ldap.*;

/**

* Class that reads a comma-delimited file of user records and

* inserts the records into an LDAP directory at a specified

* base DN

*/

public class MultiAdd {

/**

* Add entries from a comma-delimited file of user records

*

* @param args host, port, filename, dn, authdn,

* password

*/

public static void main(String[] args) {

if (args.length != 6) {

System.out.println("Usage: java MultiAdd " +

"<host> <port> <filename> " +

"<dn> <authdn> <password> ");

System.out.println("Example:");

System.out.println(" java MultiAdd " +

"localhost 389 " +

"records.csv " +

"o=airius.com\" " +

Adding an Entry 113

"\"cn=Directory Manager\" " +

"password");

System.out.println("The comma-delimited file " +

"should contain:");

System.out.println(" uid,fname,lname,phone");

System.exit(1);

}

String host = args[0];

int port = Integer.parseInt(args[1]);

String filename = args[2];

String basedn = args[3];

String authid = args[4];

String authpw = args[5];

The following two declarations determine which object class the records we are
importing are stored as.

// Object classes for a person entry

String[] objclass = { "top","person",

"organizationalPerson",

"inetOrgPerson"};

LDAPAttribute attrobj =

new LDAPAttribute("objectclass", objclass);

Then we connect to the directory, open the file, and loop on reading and parsing
each line:

BufferedReader in = null;

int numAdded = 0;

LDAPConnection ld = new LDAPConnection();

try {

// Connect to server and authenticate

ld.connect(host, port, authid, authpw);

System.out.println("Connected to " + host);

in = new BufferedReader(

new FileReader(filename));

String line;

while ((line = in.readLine()) != null) {

String uid = "";

String fname = "";

114 Creating and Maintaining Information

String lname = "";

String phone = "";

// Parse the line

try {

StringTokenizer t =

new StringTokenizer(line,",");

uid = t.nextToken();

fname = t.nextToken();

lname = t.nextToken();

phone = t.nextToken();

} catch (NoSuchElementException e) {

System.err.println("Missing fields in: " +

line);

continue;

}

The next block of code builds the entry using the attribute values parsed from
the input file. The DN is formed as the user ID from the comma-delimited file,
prepended to the base DN that is provided by the user on the command line. Once the
LDAPAttributes have been created and placed into an LDAPAttributeSet, an
LDAPEntry object is created and added to the directory.

String dn = "uid=" + uid + "," + basedn;

LDAPAttributeSet attrs = new LDAPAttributeSet();

attrs.add(attrobj);

// Western composition: first name, last name

String fullname = fname + " " + lname;

attrs.add(new LDAPAttribute("cn", fullname));

attrs.add(new LDAPAttribute(

"givenName", fname));

attrs.add(new LDAPAttribute("sn",lname));

attrs.add(new LDAPAttribute(

"telephoneNumber", phone));

// Now add the record to the directory

LDAPEntry theEntry = new LDAPEntry(dn, attrs);

try {

ld.add(theEntry);

System.out.println("Added: " + dn);

numAdded++;

} catch (LDAPException lda) {

System.out.println(lda.toString());

System.out.println("Failed to add: " + dn);

}

}

Adding an Entry 115

Any errors during the add will be caught by the following block of code. The
program does not stop when it encounters an error, but instead reports the error to the
console and continues with the next record. This way of handling errors prevents a
single bad value from causing the remaining import to fail.

} catch(Exception e) {

// Either IOException on reading the file or

// LDAPException on connecting to LDAP server

System.out.println(e.toString());

}

// Done, so disconnect

if ((ld != null) && ld.isConnected()) {

try {

ld.disconnect();

} catch (LDAPException e) {

System.out.println(e.toString());

}

}

if (in != null) {

try {

in.close();

} catch (IOException e) {

}

}

System.out.println(numAdded + " entries added");

System.exit(0);

}

}

Adding an Organizational Unit

So far in this chapter we have looked at adding new user entries. An organizational
unit, or ou, is just another type of entry. It is instructive to look at an LDIF representa-
tion of the organizational unit ou=People, o=airius.com:

dn: ou=People, o=airius.com

objectclass: top

objectclass: organizationalUnit

ou: People

... access control instructions omitted

116 Creating and Maintaining Information

An ou is simply an entry for which the DN specifies the full ou path, as well as
the objectclass attributes of top and organizationalUnit. Similarly an o is identi-
cal except that the object class is organization instead. The following code snippet
creates a new ou of Partners for Airius.com.

LDAPAttributeSet attrs = new LDAPAttributeSet();

String objclass[] = { "top","organizationalUnit" };

attrs.add(new LDAPAttribute("objectclass", objclass));

attrs.add(new LDAPAttribute("ou", "Partners"));

String dn = "ou=Partners,o=airius.com";

LDAPEntry theEntry = new LDAPEntry(dn, attrs);

try {

ld.add(theEntry);

} catch (LDAPException e) {

}

Upon execution of this code, the directory will contain a new ou. Once the ou has
been created, new entries may be created under this branch. When entries are added to
an LDAP directory, they may not reference a branch point for insertion that does not yet
exist. For instance, you cannot add an entry with the DN uid=bjensen, ou=partners,
o=airius.com if ou=partners, o=airius.com does not exist in the tree.

Processing Exceptions

An add operation will fail if the entry already exists (that is, if the DN exists). To
avoid this situation you can execute the add method, and if an exception of
LDAPException.ENTRY_ALREADY_EXISTS is caught, then use a modify. Modify is for
changing values in the directory for entries that already exist; it will be covered in the
next section. If the duplicate entry is an error condition and you do not want to over-
write an existing entry, then you can handle the exception in some other way, such as
reporting an error and aborting. You will need to identify and process other exception
types as well, in particular LDAPException.INSUFFICIENT_ACCESS_RIGHTS.

Modifying an Existing Entry

The preceding section outlined the steps necessary to add a new entry to the directory.
This section will focus on altering entries that are already in the directory. To modify a
single attribute of an entry, we use an LDAPModification object. We modify multiple
attributes by using an LDAPModificationSet. Once the LDAPModification object has
been built, the changes are written back via the modify method of LDAPConnection.

Modifying an Existing Entry 117

Modifying an attribute value can include adding a new value, changing a value, and/
or removing a value. After a brief look at the general procedure for modifying an
entry, we will examine each of these cases.

Summary of Steps to Modify an Existing Entry

Modifying an entry in the directory requires the following steps:

1. Instantiate an LDAPAttribute object for each attribute you want to modify.

2. Instantiate an LDAPModificationSet object and use the add method,
specifying LDAPModification.ADD, REPLACE, or DELETE for each
LDAPAttribute object from step 1, or construct a single
LDAPModification if only one attribute is to be updated.

3. Call the LDAPConnection.modify method with the DN and the
LDAPModificationSet or LDAPModification object from step 2.

Adding an Attribute

A value may be added to an attribute, making the attribute a multivalued attribute.
Attributes such as telephoneNumber are defined in the schema as multivalued and can
therefore have multiple values. The following code snippet adds an additional e-mail
address for an entry. This code will add a mail attribute to the indicated entry if the
attribute does not already exist. If the attribute does exist, the new value is appended
to the existing values.

LDAPAttribute attr = new LDAPAttribute("mail", "email@mycom.com");

LDAPModification mod =

new LDAPModification(LDAPModification.ADD, attr);

try {

ld.modify(theDN, mod); // write to the directory

} catch (LDAPException e) {

}

If the value already exists—that is, there already is a mail attribute with the
value “email@mycom.com”—an exception is thrown for
LDAPException.ATTRIBUTE_OR_VALUE_EXISTS.

Modifying an Attribute

To modify an existing attribute in the directory, construct an LDAPAttribute
with the new values and then create an LDAPModification using the constant

118 Creating and Maintaining Information

LDAPModification.REPLACE. A replace will also function like an add if the attribute
does not exist or contains no values. If the attribute is multivalued, a replace will
replace all values with the new values. The section on multivalued attributes later in
this chapter discusses how to modify a single value within a multivalued attribute.

The following snippet of code modifies the telephone number for an entry,
replacing all preexisting values, if any.

LDAPAttribute attr = new LDAPAttribute("telephoneNumber",

"650-555-1212");

LDAPModification mod =

new LDAPModification(LDAPModification.REPLACE, attr);

try {

ld.modify(theDN, mod);

} catch (LDAPException e) {

}

Removing an Attribute

To remove an attribute entirely from an entry, you must perform a replace or delete on
the attribute, and specify no values when constructing the LDAPAttribute object.
Removing all values of an attribute removes the attribute itself. The following code
will remove the telephoneNumber atttribute. Attributes that are mandatory for a par-
ticular object class cannot be removed.

LDAPAttribute attr = new LDAPAttribute(“telephoneNumber”);

LDAPModification mod =

new LDAPModification(LDAPModification.DELETE, attr);

//or you can use REPLACE

try {

ld.modify(theDN, mod);

} catch (LDAPException e) {

}

An LDAPModification.DELETE operation with no values specified for the
attribute will fail if the attribute does not exist in the entry. To avoid this situation (if
you don’t care if the attribute exists and has a value before you execute the operation),
use LDAPModification.REPLACE rather than DELETE.

Modifications may also be cascaded as part of a single modification set to effect
deletions, replacements, and additions in a single operation. The following code snip-
pet will change the e-mail address of the entry, delete the telephone number, and add a
facsimile number.

Modifying an Existing Entry 119

LDAPModificationSet mods = new LDAPModificationSet();

mods.add(LDAPModification.REPLACE,

new LDAPAttribute("mail","myemail@abc.com"));

mods.add(LDAPModification.DELETE,

new LDAPAttribute("telephoneNumber"));

mods.add(LDAPModification.ADD,

new LDAPAttribute("facsimileTelephoneNumber",

"650-555-1111"));

try {

ld.modify(theDN, mods);

} catch (LDAPException e) {

}

LDAP guarantees that the modify operation is atomic—that is, that when multi-
ple operations (deleting, replacing, and adding attributes to a single record) are
requested, as shown here, all the operations must succeed in order for any of them to
take effect.

Updating Multivalued Attributes

To alter a particular value of a multivalued attribute, we use a combination of a delete
operation that specifies the value(s) to be deleted, followed by an add operation that
specifies the new values. Since the modify operation is atomic, the delete and add
operations will succeed as a single operation or no change will occur. Let’s examine
some scenarios using the familiar Babs Jensen record, which was introduced in Chap-
ter 4. The following lists a subset of the record:

dn: uid=bjensen, ou=People, o=airius.com

cn: Babs Jensen

sn: Jensen

givenName: Babs

objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

ou: People

uid: bjensen

mail: bjensen@airius.com

telephoneNumber: 408 555 1862

telephoneNumber: 408 555 2681

Note the multivalued telephoneNumber attribute in the original record. The fol-
lowing snippet of code removes the existing telephone number (408-555-1862) from
the attribute and adds the new telephone number 650-555-1212.

120 Creating and Maintaining Information

LDAPAttribute dAttr =

new LDAPAttribute("telephoneNumber", "408 555 1862");

LDAPAttribute aAttr =

new LDAPAttribute("telephoneNumber", "650 555 1212");

LDAPModificationSet mods = new LDAPModificationSet();

mods.add(LDAPModification.DELETE, dAttr);

mods.add(LDAPModification.ADD, aAttr);

try {

ld.modify(theDN, mods);

} catch(Exception e) {

}

After this snippet of code is executed, the entry for Babs Jensen displays changes
in the telephoneNumber attribute:

dn: uid=bjensen, ou=People, o=airius.com

...

telephoneNumber: 408 555 2681

telephoneNumber: 650 555 1212

If we had specified REPLACE for the new number instead of a DELETE followed by
an ADD, as follows:

mods.add(LDAPModification.REPLACE, dAttr);

the entry would now have a single value for telephoneNumber:

dn: uid=bjensen, ou=People, o=airius.com

...

telephoneNumber: 650-555-1212

In this record all values of the multivalued attribute have been replaced by the
new value.

Storing Binary Data

The LDAP SDK supports storing of binary data into attributes. This feature is useful
for maintaining information that cannot be represented in a string format. Binary
storage can be used to maintain photographs of people in the directory, thereby pro-
viding security personnel with up-to-date and accurate pictures of personnel, or to
customize an online phone book entry. Another common use of binary data in LDAP
directories is storage of digital certificates. The program that follows is a stand-alone
Java application that stores and retrieves photographs in the directory. The program is

Modifying an Existing Entry 121

executed by the following command (if your directory is on the same machine as the
program, and if its port number is 389):

java JPEGLDAP localhost 389

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import java.util.*;

import javax.swing.*;

import javax.swing.border.*;

import javax.swing.filechooser.FileFilter;

import java.net.*;

import netscape.ldap.*;

/**

* A dialog for viewing and updating the jpegPhoto attribute

* of an entry in a directory

*

* @version 1.0

*/

public class JPEGLDAP extends JFrame {

/**

* Launch a dialog

*

* @param args host and port of LDAP server

*/

public static void main(String args[]) {

try {

if (args.length != 2) {

System.out.println("Usage: java JPEGLDAP " +

"<host> <port>");

System.exit(1);

}

String host = args[0];

int port = Integer.parseInt(args[1]);

// Enable the following code if you want the look

// and feel to be set to the look and feel of the

// native system.

/*

try {

UIManager.setLookAndFeel(

122 Creating and Maintaining Information

UIManager.getSystemLookAndFeelClassName());

} catch (Exception e) {

}

*/

// Create a new instance of the application frame

// and make it visible.

JFrame frame = new JPEGLDAP(host, port);

frame.pack();

frame.setVisible(true);

} catch (Exception e) {

System.err.println(e);

System.exit(1);

}

}

/**

* Constructor

*

* @param host host name of LDAP server

* @param port port number of LDAP server

*/

public JPEGLDAP(String host, int port) {

super("LDAP JPEG Photo Handler");

setDefaultCloseOperation(DO_NOTHING_ON_CLOSE);

setVisible(false);

DNEntryField = new JTextField();

DNEntryField.setPreferredSize(

new Dimension(300, 24));

DNEntryField.setMaximumSize(

new Dimension(300, 24));

JLabel DNLabel = new JLabel("DN: ");

DNLabel.setHorizontalAlignment(SwingConstants.RIGHT);

DNLabel.setLabelFor(DNEntryField);

JLabel pswdFieldLbl = new JLabel("Password: ");

pswdFieldLbl.setHorizontalAlignment(

SwingConstants.RIGHT);

pswdFieldLbl.setLabelFor(passwordField);

passwordField = new JPasswordField();

passwordField.setPreferredSize(

new Dimension(300, 24));

Modifying an Existing Entry 123

passwordField.setMaximumSize(

new Dimension(300, 24));

// Read the default images into memory for display.

noLDAP = getFileData("noldap.jpg");

noFile = getFileData("nofile.jpg");

if ((noLDAP == null) || (noFile == null)) {

System.out.println("Unable to read default files");

System.exit(1);

}

// JPEG image data for LDAP image

currentPhotoIcon =

adjustImageSize(new ImageIcon(noLDAP), dim);

currentPhoto = new JLabel(currentPhotoIcon);

currentPhotoIcon.setImageObserver(currentPhoto);

currentPhoto.setPreferredSize(dim);

currentPhoto.setMaximumSize(dim);

// JPEG image data for file image

newPhotoIcon =

adjustImageSize(new ImageIcon(noFile), dim);

newPhoto = new JLabel(newPhotoIcon);

newPhotoIcon.setImageObserver(newPhoto);

newPhoto.setPreferredSize(dim);

newPhoto.setMaximumSize(dim);

Dimension buttonSize = new Dimension(110, 16);

saveNewBtn = new JButton("< Save");

saveNewBtn.setPreferredSize(buttonSize);

saveNewBtn.setMinimumSize(buttonSize);

All the GUI elements have their own handlers to make the code easier to read
and to localize the functions of each element:

saveNewBtn.addActionListener(new saveNewJPEG());

// Nothing to save yet

saveNewBtn.setEnabled(false);

JLabel currentPhotoLbl =

new JLabel("Current Photo");

currentPhotoLbl.setHorizontalAlignment(

SwingConstants.CENTER);

currentPhotoLbl.setLabelFor(currentPhoto);

124 Creating and Maintaining Information

JLabel newPhotoLbl = new JLabel("New Photo");

newPhotoLbl.setHorizontalAlignment(

SwingConstants.CENTER);

newPhotoLbl.setLabelFor(newPhoto);

loadNewBtn = new JButton("Select Photo");

loadNewBtn.setPreferredSize(buttonSize);

loadNewBtn.setMinimumSize(buttonSize);

loadNewBtn.addActionListener(new GetNewJPEG());

loadNewBtn.setEnabled(false); // Not valid yet

JButton retrieveBtn = new JButton("Get Entry");

retrieveBtn.setPreferredSize(buttonSize);

retrieveBtn.setMinimumSize(buttonSize);

retrieveBtn.addActionListener(new GetLDAPEntry());

// Now lay out all the components

Box pane = new Box(BoxLayout.Y_AXIS);

getContentPane().add(pane);

Box textBox = new Box(BoxLayout.X_AXIS);

Box DNBox = new Box(BoxLayout.X_AXIS);

DNBox.add(Box.createGlue());

DNBox.add(DNLabel);

DNBox.add(DNEntryField);

Box passwordBox = new Box(BoxLayout.X_AXIS);

passwordBox.add(Box.createGlue());

passwordBox.add(pswdFieldLbl);

passwordBox.add(passwordField);

Box inputBox = new Box(BoxLayout.Y_AXIS);

inputBox.add(DNBox);

inputBox.add(Box.createVerticalStrut(3));

inputBox.add(passwordBox);

textBox.add(inputBox);

textBox.add(Box.createHorizontalStrut(6));

textBox.add(retrieveBtn);

pane.add(Box.createGlue());

pane.add(textBox);

pane.add(Box.createVerticalStrut(6));

pane.add(Box.createGlue());

Box theRestBox = new Box(BoxLayout.X_AXIS);

pane.add(theRestBox);

Modifying an Existing Entry 125

Box imageBox = new Box(BoxLayout.X_AXIS);

Box currentBox = new Box(BoxLayout.Y_AXIS);

currentBox.add(currentPhotoLbl);

currentBox.add(currentPhoto);

imageBox.add(currentBox);

imageBox.add(Box.createHorizontalStrut(6));

imageBox.add(saveNewBtn);

imageBox.add(Box.createHorizontalStrut(6));

Box newBox = new Box(BoxLayout.Y_AXIS);

newBox.add(newPhotoLbl);

newBox.add(newPhoto);

imageBox.add(newBox);

theRestBox.add(Box.createGlue());

theRestBox.add(imageBox);

theRestBox.add(Box.createHorizontalStrut(6));

theRestBox.add(Box.createGlue());

theRestBox.add(loadNewBtn);

// Handle window-closing action

addWindowListener(new WindowCloser());

// Connect to server

try {

ld = new LDAPConnection();

ld.connect(host, port);

} catch (LDAPException e) {

System.out.println("Connect error: "+ e.toString());

System.exit(1);

}

System.out.println("Connected to LDAP server " +

host);

}

The getFileData method reads a JPEG file from the disk, returning the data as a
byte array:

/**

* Read the contents of a file into memory

*

* @param fname name of the file

* @return the contents of the file

*/

public byte[] getFileData(String fname) {

byte[] data = null;

126 Creating and Maintaining Information

RandomAccessFile rf = null;

try {

rf = new RandomAccessFile(fname,"r");

data = new byte[(int)rf.length()];

rf.readFully(data);

} catch (IOException e) {

e.printStackTrace();

}

try {

if (rf != null) {

rf.close();

}

} catch (IOException e) { }

return data;

}

The adjustImageSize method resizes an image to fit within an image window:

/**

* If the image is larger than the specified max, then scale it

* down; otherwise return the input image

*

* @param icon input image

* @param dim max width and height

* @return scaled-down image, or original image

*/

private ImageIcon adjustImageSize(ImageIcon icon,

Dimension dim) {

if ((icon.getIconHeight() > dim.height) ||

(icon.getIconWidth() > dim.width)) {

Image img = icon.getImage();

float hRatio = (float)icon.getIconHeight() / dim.height;

float wRatio = (float)icon.getIconWidth() / dim.width;

int h, w;

if (hRatio > wRatio) {

h = dim.height;

w = (int)(icon.getIconWidth() / hRatio);

} else {

w = dim.width;

h = (int)(icon.getIconHeight() / wRatio);

}

img = img.getScaledInstance(w, h, img.SCALE_SMOOTH);

return new ImageIcon(img);

} else {

Modifying an Existing Entry 127

return icon;

}

}

The handler for the Get New button presents the user with a file chooser that
displays only JPEG files. We also save the name of the directory of the selected file so
that we can return the user to this directory the next time a new file is to be selected:

/**

* Handler for New button

*/

class GetNewJPEG implements ActionListener {

/**

* Called when a button is pressed

*

* @param e event from New button

*/

public void actionPerformed(ActionEvent e) {

// Select a file

JFileChooser chooser = new JFileChooser(directory);

// Make sure it is a JPEG file

JPEGFileFilter jpgfilter = new JPEGFileFilter();

chooser.setFileFilter(jpgfilter);

int returnVal =

chooser.showOpenDialog(JPEGLDAP.this);

directory =

chooser.getCurrentDirectory().getPath();

if (returnVal == JFileChooser.APPROVE_OPTION) {

File f = chooser.getSelectedFile();

String fullname = f.getPath();

// Load the JPEG data

newFilePhoto = getFileData(fullname);

if (newFilePhoto == null) {

System.out.println("Unable to read " +

"file " +

fullname);

return;

}

// Create image object

newPhotoIcon =

adjustImageSize(

new ImageIcon(newFilePhoto), dim);

newPhoto.setIcon(newPhotoIcon);

128 Creating and Maintaining Information

newPhoto.setPreferredSize(dim);

newPhoto.setMaximumSize(dim);

// There is now an image to save

saveNewBtn.setEnabled(true);

return;

}

}

}

As the next block of code shows, the handler for the Get Entry button at-
tempts to read the entry from the LDAP directory and locate the photo if present. An
LDAPConnection object is reused; here we just reauthenticate with the new DN and
password. We save the DN and password used to load this entry, in case the user
enters a new one (without loading a new entry) and still wants to save the current
image before clicking Get Entry.

/**

* Handler for Get button

*/

class GetLDAPEntry implements ActionListener {

/**

* Called when a button is pressed

*

* @param e event from Get button

*/

public void actionPerformed(ActionEvent e) {

byte[] theLDAPPhoto = null;

DNRead = DNEntryField.getText();

DNPswd = new String(passwordField.getPassword());

if ((DNRead.length() == 0) ||

(DNPswd.length() == 0)) {

System.out.println("DN and Password must " +

"be entered!");

return;

}

// Go get the data

try {

// Authenticate with the credentials of the

// owner of the photo

ld.authenticate(DNRead, DNPswd);

// Read the entry

LDAPEntry entry = ld.read(DNRead, ATTRS);

Modifying an Existing Entry 129

// Extract the jpegPhoto attribute

LDAPAttribute attr =

entry.getAttribute(ATTRS[0]);

if (attr != null) {

The code that follows reads the jpegPhoto attribute and gets the values as an
enumerated list using getByteValues, although we will use only the first one (if there
is more than one value). Once the data is in a byte array, it can be treated just as if it
had been read from the disk.

// Get the values as byte arrays

Enumeration enumVals =

attr.getByteValues();

// Get the first value - if there’s more

// than one

if (enumVals.hasMoreElements()) {

theLDAPPhoto = (byte[])enumVals.nextElement();

}

} else {

System.out.println("No photo in the " +

"directory for " +

DNRead);

}

The following block of code deals with the situation in which the entry has no
photo. We return the panels to the default images and prepare for the user to select a
new image.

if ((attr == null) ||

(theLDAPPhoto == null)) {

// Reset images to mark this condition

currentPhotoIcon =

adjustImageSize(new ImageIcon(noLDAP), dim);

currentPhoto.setIcon(currentPhotoIcon);

newPhotoIcon =

adjustImageSize(new ImageIcon(noFile), dim);

newPhoto.setIcon(newPhotoIcon);

newFilePhoto = null;

// Nothing to save now

saveNewBtn.setEnabled(false);

loadNewBtn.setEnabled(true);

} else {

// Show image from LDAP and clear right

130 Creating and Maintaining Information

// image

newFilePhoto = theLDAPPhoto;

currentPhotoIcon =

adjustImageSize(

new ImageIcon(newFilePhoto), dim);

currentPhoto.setIcon(currentPhotoIcon);

newPhotoIcon =

adjustImageSize(new ImageIcon(noFile), dim);

newPhoto.setIcon(newPhotoIcon);

loadNewBtn.setEnabled(true);

}

currentPhoto.setPreferredSize(dim);

currentPhoto.setMaximumSize(dim);

newPhoto.setPreferredSize(dim);

newPhoto.setMaximumSize(dim);

} catch (LDAPException le) {

System.out.println(le.toString());

}

return;

}

}

The method saveNewJPEG is responsible for writing the new photograph to the
directory. We reauthenticate, construct an attribute for storing the photo, and then
specify the LDAPModification.REPLACE modification type to overwrite an existing
value or create a new one if it does not exist:

/**

* Handler for Save button

*/

class saveNewJPEG implements ActionListener {

/**

* Called when a button is pressed

*

* @param e event from Save button

*/

public void actionPerformed(ActionEvent e) {

// Save the image in the directory

try {

// Authenticate with the credentials of the

// owner of the photo

Modifying an Existing Entry 131

ld.authenticate(DNRead,DNPswd);

// Write image to directory

LDAPAttribute attrphoto =

new LDAPAttribute(ATTRS[0],newFilePhoto);

LDAPModification mod =

new LDAPModification(

LDAPModification.REPLACE,

attrphoto);

ld.modify(DNRead,mod);

// Show current (LDAP) image (same as right)

currentPhotoIcon =

adjustImageSize(

new ImageIcon(newFilePhoto), dim);

currentPhoto.setIcon(currentPhotoIcon);

currentPhoto.setPreferredSize(dim);

currentPhoto.setMaximumSize(dim);

System.out.println("Photo saved to DN: " + DNRead);

} catch (LDAPException le) {

System.out.println(le.toString());

}

return;

}

}

The following method handles requests to shut down the application. This code
also disconnects from the LDAP server.

/**

* Handler for window closing events

*/

class WindowCloser extends WindowAdapter {

/** Close the window and application

*

* @param event event for window closing

*/

public void windowClosing(WindowEvent event) {

Window win = event.getWindow();

win.setVisible(false);

win.dispose();

// Close down LDAP connection

if ((ld != null) && (ld.isConnected())) {

try {

ld.disconnect();

132 Creating and Maintaining Information

} catch (LDAPException e) {

System.out.println(e.toString());

}

}

System.exit(0);

}

}

A custom file filter is provided to restrain the file chooser to image files with the
jpg extension:

/**

* Helper class for JFileChooser to force selection of a

* JPEG file

*/

class JPEGFileFilter extends FileFilter {

/**

* Validate a file name

*

* @param f a file name

* @return true if it is a valid JPEG file name

*/

public boolean accept(File f) {

if (f == null) {

return false;

}

if (f.isDirectory()) {

return true;

}

String name = (f.getName()).toLowerCase();

return ((name.endsWith("jpg")) ||

(name.endsWith("jpeg")));

}

/**

* Returns a description string for the file filter

*

* @return description field for file filter

*/

public String getDescription() {

return "JPEG Image Files (*.jpg, *.jpeg)";

}

}

Modifying an Existing Entry 133

All class and instance members are declared:

private LDAPConnection ld = null;

static final private String[] ATTRS = {"jpegPhoto"};

// Size of image

static final private Dimension dim = new Dimension(144, 156);

// Stores image for no LDAP photo

private byte[] noLDAP;

// Stores image for no file photo

private byte[] noFile;

// When user selects new file to send

private byte[] newFilePhoto;

// Track what we read for current display

private String DNRead = "";

private String DNPswd = "";

// Get the working directory

private String directory =

System.getProperty("user.dir");

private JTextField DNEntryField;

private JPasswordField passwordField;

private ImageIcon currentPhotoIcon;

private JLabel currentPhoto;

private JLabel newPhoto;

private ImageIcon newPhotoIcon;

private JButton saveNewBtn;

private JButton loadNewBtn;

}

Execute the program, enter a DN and password, and click the Get Entry button. You
will be greeted with the display shown in Figure 6-2. If the entry already has a photo-
graph stored, it will be displayed in the left pane.

Select any JPEG file off the local hard disk and click the Save New button to
place it into the directory. Images may also be displayed from the directory inside of a
browser that can issue an LDAP query and display a JPEG photo that is returned
(assuming security has not been set to prevent this viewing). After you save the entry,
the screen will look like Figure 6-3.

After the photograph is stored in the directory, a standard query by the browser
will show the photograph with the entry. Figure 6-4 shows the results of a sample
browser query using an LDAP URL for the record used in Figures 6-2 and 6-3:

ldap://localhost:389/uid%3Dbjensen%2Cou%3Dpeople%2Co%3Dairius.com.

The LDAP URL format will be described in detail in Chapter 15. We must use URL
encoding for commas and equal signs when pasting the LDAP URL into a browser.

134 Creating and Maintaining Information

Storing Preferences and State

The Java language and its serialization model allow direct storage of Java objects
within the directory. To “serialize” an object means to convert its state into a byte
stream in such a way that the byte stream can be converted back into a copy of the
object. Serialization is very useful if you want to persistently store a user’s shopping
cart or preferences for that user’s browser session at your site.

Modifying an Existing Entry 135

FIGURE 6-2. LDAP JPEG Photo Handler.

FIGURE 6-3. After clicking Save New.

Servlets have become very popular for building applications on the Net. The servlet
model has a session architecture that allows the developer to serialize this information.
Once serialized, the information can be stored for the user inside the directory, and when
the user returns to the site the previous session can be restored. We will develop a servlet
application using LDAP in Chapter 13. The stand-alone Java program that follows
shortly demonstrates how to serialize data and store it in the directory. Netscape Direc-
tory Server comes with a schema for storing Java objects. If your directory does not
include this schema, you can use the file jndi-object-schema.ldif that comes with
Directory SDK for Java (in the JNDI section) to add support for the schema elements that
relate to Java object serialization.

This schema includes an object class, javaSerializedObject, that has the
attributes javaClassName and javaSerializedData, among others, for storing this
kind of data. The javaClassName attribute stores the class name of the serialized
object so that applications may determine the class without first deserializing the
object. The javaSerializedData attribute stores the serialized data. Even if we do

136 Creating and Maintaining Information

FIGURE 6-4. Browser view of photograph.

not use the value of the javaClassName attribute in the following block of code, it is a
mandatory attribute for objects of the object class javaSerializedObject.

The SavePrefs program that follows serializes and deserializes data to and from
the directory. If the program is executed with the r option, it will read the data from
the directory and deserialize it. Executing the program with the w option will serialize
a preferences object and write it to the directory. The object written or read contains
two integers and the current date and time.

import java.io.*;

import java.util.Date;

import java.util.*;

import netscape.ldap.*;

/**

* Read or write the serialized form of a preferences object

* to the directory

*/

public class SavePrefs {

private static final int NONE = 0;

private static final int READ = 1;

private static final int WRITE = 2;

// Where to store the preferences

private static final String PREFS_DN =

"cn=savePrefs,ou=People,o=airius.com";

private static final String ATTR_CLASS =

"javaClassName";

private static final String ATTR_DATA =

"javaSerializedData";

// Object classes of the preferences object

private static final String[] PREFS_OC =

{ "top", "javaContainer",

"javaSerializedObject" };

/**

* Read or write the serialized form of a preferences

* object to "cn=savePrefs,ou=People,o=airius.com"

*

* @param args host, port, dn, authdn, password,

* [r] | [w, x, y]

*/

Modifying an Existing Entry 137

public static void main (String[] args) {

int pgmOption = NONE;

Prefs prefvals = null;

String host = null;

int port = -1;

String authid = null;

String authpw = null;

int err = -1;

if (args.length > 4) {

host = args[0];

port = Integer.parseInt(args[1]);

authid = args[2];

authpw = args[3];

if ((args.length == 5) &&

args[4].equalsIgnoreCase("r")) {

pgmOption = READ;

} else if ((args.length == 7) &&

args[4].equalsIgnoreCase("w")) {

prefvals =

new Prefs(Integer.parseInt(args[5]),

Integer.parseInt(args[6]));

pgmOption = WRITE;

}

}

if (pgmOption == NONE) {

System.out.println("Usage: java SavePrefs " +

"<host> <port> " +

"<authdn> <password> " +

"[r]|[w x y]");

System.out.println("Examples:");

System.out.println(" java SavePrefs " +

"localhost 389 " +

"\"cn=Directory Manager\" " +

"password r");

System.out.println(" java SavePrefs " +

"localhost 389 " +

"\"cn=Directory Manager\" " +

"password w 35 62");

System.out.println("r reads values");

System.out.println("w writes values x and y");

System.exit(1);

}

138 Creating and Maintaining Information

LDAPConnection ld = new LDAPConnection();

try {

// Connect to server and authenticate

ld.connect(host, port, authid, authpw);

} catch (LDAPException e) {

System.out.println("Error: " + e.toString());

System.exit(1);

}

if (pgmOption == READ) {

// Read data from directory

byte[] info = readBytes(ld, PREFS_DN, ATTR_DATA);

if (info == null) {

System.out.println("Unable to read data " +

"from " + PREFS_DN);

} else {

// Deserialize the data into an object

try {

prefvals =

(Prefs)deserializeObject(info);

System.out.println("a=" +

prefvals.geta());

System.out.println("b=" +

prefvals.getb());

System.out.println("Date created = " +

prefvals.getDate());

err = 0;

} catch (IOException e) {

System.out.println(e.toString());

}

}

} else if (pgmOption == WRITE) {

// Create the entry if it doesn’t exist

createEntry(ld);

// Serialize the object

try {

byte[] info = serializeObject(prefvals);

if (info == null) {

System.out.println("Unable to serialize " +

"object");

} else {

Modifying an Existing Entry 139

System.out.println("Object serialized... " +

"Size = " +

info.length +

" bytes");

// Write to directory

err = writeObject(ld, PREFS_DN,

"thePrefs", info);

if (err != 0) {

System.out.println("Error writing to " +

PREFS_DN +

": " +

err);

} else {

System.out.println("Object stored at " +

PREFS_DN);

}

}

} catch (IOException e) {

System.out.println(e.toString());

}

}

// Done, so disconnect

if ((ld != null) && ld.isConnected()) {

try {

ld.disconnect();

} catch (LDAPException e) {

System.out.println(e.toString());

}

}

System.exit(err);

}

The createEntry method creates an entry in the directory the first time we need
to write the values to it:

/**

* Create the entry if it doesn’t exist

*

* @param ld active connection to the directory

*/

protected static void createEntry(LDAPConnection ld) {

try {

140 Creating and Maintaining Information

// Construct the attributes of the entry

LDAPAttributeSet attrs = new LDAPAttributeSet();

attrs.add(new LDAPAttribute(

"objectclass", PREFS_OC));

attrs.add(new LDAPAttribute(

"javaClassName", "Prefs"));

byte[] info = serializeObject(new Prefs());

attrs.add(new LDAPAttribute(

"javaSerializedData", info));

attrs.add(new LDAPAttribute(

"cn", "savePrefs"));

// Construct an entry

LDAPEntry entry = new LDAPEntry(PREFS_DN, attrs);

// Add the entry to the directory

ld.add(entry);

} catch (LDAPException e) {

if (e.getLDAPResultCode() !=

e.ENTRY_ALREADY_EXISTS) {

System.out.println(e.toString());

}

} catch (IOException ioe) {

System.out.println(ioe.toString());

}

}

The following method reads the entry from the directory. It makes use of the
getByteValues method to return the attribute values as an enumerated list of byte[].
If more than one value is present, only the first value is used.

/**

* Read the first value of a single attribute from the

* directory and return it as a byte array

*

* @param ld active connection to directory

* @param dn DN of entry to read

* @param attr name of attribute to read

* @return value of the attribute as a byte array

*/

public static byte[] readBytes(LDAPConnection ld,

String dn,

String attrName) {

byte[] attrVal = null;

try {

// Get the attribute from the directory

Modifying an Existing Entry 141

LDAPEntry entry =

ld.read(dn, new String[] { attrName });

LDAPAttribute attr =

entry.getAttribute(attrName);

// Get first value, if there’s more than one

Enumeration enumVals = attr.getByteValues();

if (enumVals.hasMoreElements()) {

attrVal = (byte[])enumVals.nextElement();

}

} catch (LDAPReferralException e) {

// Ignore referrals

} catch (LDAPException e) {

System.out.println(e.toString());

}

return attrVal;

}

The writeObject method that follows writes the serialized data to the directory.
Note the use of the LDAPModification.REPLACE modification type to overwrite an
existing value or create a new one if it does not exist.

/**

* Write the serialized form of an object to the directory

* as a byte array

*

* @param ld active connection to directory

* @param dn DN of entry to write

* @param className class of serialized object

* @param data serialized object

* @return 0 on success, 1 on error

*/

public static int writeObject(LDAPConnection ld,

String dn,

String className,

byte[] data) {

// Use an LDAPModification object to replace the

// current values of the entry. If they do not

// exist, they will be created.

LDAPModificationSet mods = new LDAPModificationSet();

mods.add(LDAPModification.REPLACE,

new LDAPAttribute(ATTR_CLASS,

"Prefs"));

mods.add(LDAPModification.REPLACE,

142 Creating and Maintaining Information

new LDAPAttribute(ATTR_DATA,

data));

try {

// Write the entry to the directory

ld.modify(dn, mods);

} catch (LDAPException e) {

System.out.println(e.toString());

return 1;

}

return 0;

}

The deserializeObject method takes a byte array and reconstitutes an object:

/**

* Instantiate an object from its serialized form

*

* @param byteBuf serialized form of object

* @return instantiated object

* @exception IOException on failure

*/

protected static Object deserializeObject(byte[] byteBuf)

throws IOException {

ByteArrayInputStream bis = null;

ObjectInputStream objis = null;

try {

bis = new ByteArrayInputStream(byteBuf);

objis = new ObjectInputStream(bis);

return objis.readObject();

} catch(Exception ex) {

throw(new IOException(

"Failed to deserialize object"));

} finally {

if (objis != null) {

objis.close();

}

if (bis != null) {

bis.close();

}

}

}

Modifying an Existing Entry 143

The serializeObject method produces a byte array by serializing an object:

/**

* Convert an object to its serialized form

*

* @param obj object to be serialized

* @return serialized form of object

* @exception IOException on failure

*/

protected static byte[] serializeObject(Object obj)

throws IOException {

ByteArrayOutputStream bos = null;

ObjectOutputStream objos = null;

try {

bos = new ByteArrayOutputStream();

objos = new ObjectOutputStream(bos);

objos.writeObject(obj);

objos.flush();

return bos.toByteArray();

} catch(Exception ex) {

throw(new IOException(

"Failed to serialize object"));

} finally {

if (objos != null) {

objos.close();

}

if (bos != null) {

bos.close();

}

}

}

}

Most objects can easily be serialized; all that is required for simple objects is to
declare that they extend java.io.Serializable:

/**

* Trivial class to illustrate serialization and

* deserialization

*/

class Prefs implements Serializable {

144 Creating and Maintaining Information

/**

* Default constructor for deserialization

*/

public Prefs() {

this(0, 0); // Default values

}

/**

* Constructor that initializes with values

*

* @param a an integer value

* @param b another integer value

*/

public Prefs(int a, int b) {

this.a = a;

this.b = b;

this.d = new Date();

}

/**

* Return a

*

* @return a

*/

public int geta() { return a; }

/**

* Return b

*

* @return b

*/

public int getb() { return b; }

/**

* Return date of construction

*

* @return date of construction

*/

public Date getDate() { return d; }

/**

* Assigns a

*

* @param a1 value for a

Modifying an Existing Entry 145

*/

public void seta(int a1) { a = a1; }

/**

* Assigns b

*

* @param b1 value for b

*/

public void setb(int b1) { b = b1; }

/**

* Assigns the construction date

*

* @param newDate value for date

*/

public void setDate(Date newDate) { d = newDate; }

private int a;

private int b;

private Date d = new Date();

}

The program that we have presented in this section on storing preferences and
state is instructive in that it demonstrates serialization, shows how to modify at-
tributes, and handles the case in which the attribute does not exist the first time. Note
that you will need to specify the DN and password of an administrator (for example,
the Directory Manager) to alter the attributes of the SavePrefs user. The reason
is that the default access control does not allow a user to create or modify the
javaSerializedData or javaClassName attributes. In Chapter 7 we will discuss the
use of ACIs (access control instructions) to configure access control. Once you have
configured access control to allow a user to modify these attributes, you can authenti-
cate as the user instead of as an administrator.

Executing the program with the following commands will write the data to the
directory and then read it back and display it.

java SavePrefs localhost 389 "cn=Directory Manager" "password" w 6 7

java SavePrefs localhost 389 "cn=Directory Manager" "password" r

SavePrefs demonstrates a way to maintain state and preferences on the net-
work for your Java programs. Chapter 11 will cover storing program preferences in
the directory in greater detail.

146 Creating and Maintaining Information

Deleting an Entry

The data in an LDAP directory must be kept up-to-date and valid. Eventually an entry
will need to be removed. Deleting an entire entry from the directory is a simple process:

String theDN = "uid=bjensen, ou=People, o=airius.com";

try {

ld.delete(theDN);

} catch (LDAPException e) {

}

The LDAPConnection.delete method takes a single argument: the DN of the
record to be deleted. All that is needed to delete a leaf node is the DN and the proper
authorization to delete the record. An ou or o entry may be deleted using the code just
given, provided there are no entries underneath in the tree. A node that contains
entries underneath it is a branch node, and it cannot be deleted using this method.
This constraint is a limitation of the LDAP protocol.

The following code removes an entire branch by first removing all subentries
underneath. The code will also delete a leaf node and can be used as a generic library
routine for any form of deletion. The code contains the necessary warning, but it is
worth repeating here: Be very careful with this code and specify your starting point care-
fully! The code is the equivalent of rm -rf in UNIX or deltree -y *.* in Windows.

import netscape.ldap.*;

import java.util.*;

/**

* Delete a branch point and all records under it

*

* USE THIS PROGRAM WITH CARE. IT WILL ERASE YOUR ENTIRE

* DIRECTORY IF YOU SET A START POINT OF THE ROOT AND HAVE

* SUFFICIENT ACCESS RIGHTS.

* !!!! YOU HAVE BEEN WARNED !!!!

*/

public class BranchDelete {

/**

* Delete an entry or subtree

*

* @param args host, port, dn, authdn, password, YES|N

*/

public static void main(String[] args) {

Deleting an Entry 147

if (args.length != 6) {

System.out.println("Usage: java BranchDelete " +

"<host> <port> " +

"<dn> <authdn> <password> " +

"YES|N");

System.out.println("Example:");

System.out.println(" java BranchDelete " +

"localhost 389 " +

"\"ou=notneeded," +

"o=airius.com\" " +

"\"cn=Directory Manager\" " +

"password YES");

System.out.println("YES|N is a confirmation " +

"for actually doing the " +

"deletion");

System.out.println("YES must be in all caps " +

"and spelled out!");

System.exit(1);

}

String host = args[0];

int port = Integer.parseInt(args[1]);

String branch = args[2];

String authid = args[3];

String authpw = args[4];

boolean doDelete = false;

if (args[5].equals("YES")) {

System.out.println("Deleting " + branch + ‘!’);

doDelete = true;

} else {

System.out.println("Not deleting");

}

LDAPConnection ld = new LDAPConnection();

try {

// Connect to server and authenticate

ld.connect(host, port, authid, authpw);

// Start deleting from the selected point

delete(branch, ld, doDelete);

} catch(LDAPException e) {

System.out.println(e.toString());

}

148 Creating and Maintaining Information

// Done, so disconnect

if ((ld != null) && ld.isConnected()) {

try {

ld.disconnect();

} catch (LDAPException e) {

System.out.println(e.toString());

}

}

System.exit(0);

}

In the next block of code, we first determine if any entries are under
the one being deleted. We use a search scope of LDAPConnection.SCOPE_ONE. We are
requesting no attributes from the search because the only data we are interested in is
the DNs of the entries we find. If there are any entries, we recursively call ourselves
with the DNs of those entries to check the next level. If there are no entries, then we
delete the entry using the standard LDAPConnection.delete method.

/**

* Delete an entry, recursing if the entry has children

*

* @param dn DN of the entry to delete

* @param ld active connection to server

* @param doDelete true if the entries really

* are to be deleted

*/

public static void delete(String dn,

LDAPConnection ld,

boolean doDelete) {

String theDN = "";

try {

LDAPSearchConstraints cons =

ld.getSearchConstraints();

// Retrieve all results at once

cons.setBatchSize(0);

: // Find all immediate child nodes; return no

// attributes

LDAPSearchResults res =

ld.search(dn,

ld.SCOPE_ONE,

Deleting an Entry 149

"objectclass=*",

new String[] {LDAPv3.NO_ATTRS},

false,

cons);

// Recurse on entries under this entry

while (res.hasMoreElements()) {

try {

// Next directory entry

LDAPEntry entry = res.next();

theDN = entry.getDN();

// Recurse down

delete(theDN, ld, doDelete);

} catch (LDAPReferralException e) {

// Do not follow referrals; just list them

System.out.println("Search reference: ");

LDAPUrl refUrls[] = e.getURLs();

for (int i = 0; i < refUrls.length; i++) {

System.out.println(

" " + refUrls[i].getUrl());

}

continue;

} catch (LDAPException e) {

System.out.println(e.toString());

continue;

}

}

// At this point, the DN represents a leaf node,

// so stop recursing and delete the node

try {

if (doDelete) {

ld.delete(dn);

System.out.println(dn + " deleted");

}

else {

System.out.println(dn +

" would be

deleted");

}

} catch (LDAPException e) {

System.out.println(e.toString());

}

150 Creating and Maintaining Information

} catch(LDAPException e) {

System.out.println(e.toString());

}

return;

}

}

The CD-ROM that accompanies this book includes an LDIF file that you can
import into the directory to test the branch deletion code. Import the file
branchdelete.ldif using the following command:

java LDAPModify -D "cn=directory manager" -w password -c -a -f

branchdelete.ldif

This file will create a new ou entry called “People2” and place entries under-
neath it, including another ou entry.

Execute BranchDelete by typing the following:

java BranchDelete localhost 389 "ou=People2,o=airius.com"

"cn=Directory Manager" "password" N

The N means you do not wish the deletions to be performed, but instead you
want the entries that would be deleted to be displayed. When you are ready to try the
actual deletion, reissue the command with the YES option instead.

The preceding block of code provides a generic library routine for universal dele-
tions. It is not transactional, though, because LDAP does not support transactions or
subtree deletions as a single operation. You may have permission to delete some
entries in a subtree but not others, in which case BranchDelete will fail midway
through the subtree deletion.

Renaming an Entry: Modifying the RDN

Renaming an entry means changing the relative distinguished name (RDN) of the
entry. Suppose you would like to rename an entry with the DN uid=bjensen, ou=

People, o=airius.com to have the DN uid=babsjensen, ou=People, o=airius.com.
The RDN of the entry is uid=bjensen. The LDAPConnection.rename method invokes
the LDAP operation to change the RDN of the entry. There are four forms of the
rename method. We will look at two of these forms:

public void rename(String DN, String newRDN, boolean deleteOldRDN)

throws LDAPException

Renaming an Entry: Modifying the RDN 151

public void rename(String DN, String newRDN, String newParentDN,

boolean deleteOldRDN) throws LDAPException

The first form of the rename method is for altering the RDN without moving the
entry to a different branch node in the directory tree. The best way to understand how
the rename operation works is to look at an entry before and after a rename has been
issued. The entry in Figure 6-5 is one on which we wish to perform a rename.

A small Java program (RenameRDN.java) to test the LDAPConnection.rename
method is provided on the CD-ROM that accompanies this book. This program takes
some simple arguments and passes them directly to the rename method after setting
up a connection to the directory. We will use it in the following examples.

Let’s rename bjensen to babsjensen and not delete the old RDN. Execute the
following command:

java RenameRDN localhost 389 "uid=bjensen,ou=People,o=airius.com"

"uid=babsjensen" "cn=Directory Manager" "password" N

The new record for Babs Jensen looks like Figure 6-6. Note (1) that the DN is
now uid=babsjensen, ou=People, o=airius.com and (2) that because we requested
the rename operation not to delete the old RDN, there are two values for the uid
attribute (the old value “bjensen” and the new value “babsjensen”).

Let’s execute the command again on the original record and specify true for the
deleteoldRDN parameter:

java RenameRDN localhost 389 "uid=bjensen,ou=People,o=airius.com"

"uid=babsjensen" "cn=Directory Manager" "password" Y

Figure 6-7 shows the result. The DN has been changed as in the previous exam-
ple, and the uid field contains only the new value. This is the expected result of a
rename operation and is the form that is most commonly used.

152 Creating and Maintaining Information

dn: uid=bjensen, ou=People, 0=airius.com

cn: Babs Jensen

...

uid: bjensen

FIGURE 6-5. The original Babs Jensen entry.

Let’s continue our investigation with the second form of the rename method, in
which we alter the parent. Again, run RenameRDN on the original Babs Jensen entry
depicted in Figure 6-5:

java RenameRDN "uid=bjensen,ou=People,o=airius.com" "uid=babsjensen"

"ou=People2,o=airius.com" "cn=Directory Manager" "password" Y

As a result, the entry for bjensen is moved into a different part of the LDAP
tree—namely, under ou=People2. This operation is not supported in most current
LDAP directory implementations, including Netscape Directory Server, although it
is defined as valid for LDAP version 3. Figure 6-8 shows the new entry after the
rename.

The lack of support in the server for moving an entry to another parent makes
the renaming of populated ou or o entries rather difficult. The following code provides a
way to effectively move or rename an o or ou, while also moving or renaming all the
entries under it. If you wish to delete the original entries at the same time, you can follow
the move with a call to BranchDelete, which was presented in the previous section.

The user DN that is passed to the program for authentication purposes should
have enough privileges to perform the moves and insertions in the new location of the

Renaming an Entry: Modifying the RDN 153

dn: uid=bjensen, ou=People, o=airius.com

...

cn: Babs Jensen

uid: bjensen

uid: babsjensen

FIGURE 6-6. The Babs Jensen entry after renaming
without deleting the old RDN.

dn: uid=bjensen, ou=People, o=airius.com

...

cn: Babs Jensen

uid: babsjensen

FIGURE 6-7. The Babs Jensen entry after renaming and
deleting the old RDN.

directory tree. Operations of this type are normally performed by a highly privileged
user (for Netscape Directory Server, typically cn=Directory Manager).

The following code implements a recursive algorithm to create a new entry at the
desired location and then move all its subordinate children to the new location. It does
not use the rename method, relying instead on the add and search methods that are
supported by all LDAP servers.

import java.util.*;

import netscape.ldap.*;

/**

* Class that will move a specified entry to a new location,

* including any subentries under it.

* Subentries that are leaf nodes will have their original

* entry deleted before the new one is created. This is

* to avoid constraint violations against duplicate uids

* existing in two places in the tree at the same time.

*/

public class MoveNode {

/**

* Move an entry or subtree

*

* @param args host, port, dn, new location, authdn,

* password, YES | N

*/

public static void main(String[] args) {

if (args.length != 7) {

System.out.println("Usage: java MoveNode " +

"<host> <port> " +

"<dn> <newlocation> " +

"<authdn> <password> " +

154 Creating and Maintaining Information

dn: uid=bjensen, ou=People, o=airius.com

...

cn: Babs Jensen

uid: babsjensen

FIGURE 6-8. The Babs Jensen entry after being moved
to People2.

"YES|N");

System.out.println("Example:");

System.out.println(" java MoveNode " +

"localhost 389 " +

"\"ou=People," +

"o=airius.com\" " +

"\"ou=People," +

"\"ou=employees," +

"o=airius.com\" " +

"\"cn=Directory Manager\" " +

"password YES");

System.out.println(" will move " +

"ou=People,airius.com to " +

"ou=People,ou=employees," +

"airius.com");

System.out.println("YES|N is a confirmation " +

"for actually doing the " +

"deletion");

System.out.println("YES must be in all caps " +

"and spelled out!");

System.exit(1);

}

String host = args[0];

int port = Integer.parseInt(args[1]);

String branch = args[2];

String newDN = args[3];

String authid = args[4];

String authpw = args[5];

boolean doMove = false;

if (args[6].equals("YES")) {

System.out.println("Moving " + branch + " to " +

newDN + ‘!’);

doMove = true;

} else {

System.out.println("Not doing the move");

}

LDAPConnection ld = new LDAPConnection();

try {

// Connect to server and authenticate

ld.connect(host, port, authid, authpw);

Renaming an Entry: Modifying the RDN 155

// Start recursively moving

move(branch, newDN, ld, doMove);

// If you want the old tree deleted, call the

// BranchDelete.delete method here

} catch(LDAPException e) {

System.out.println(e.toString());

}

// Done, so disconnect

if ((ld != null) && ld.isConnected()) {

try {

ld.disconnect();

} catch (LDAPException e) {

System.out.println(e.toString());

}

}

System.exit(0);

}

/**

* Move an entry or a subtree to a new location

*

* @param dn entry or subtree to move

* @param parentDN new parent location

* @param ld active connection to directory

* @param doMove true if the entries really

* are to be moved

* @exception LDAPException on failure

*/

public static void move(String dn,

String parentDN,

LDAPConnection ld,

boolean doMove)

throws LDAPException {

// Read all attributes of the entry

LDAPEntry entry = ld.read(dn);

The following code takes the DN of the starting point and breaks it apart.
The first element (given a DN of ou=advertising, o=airius.com that is being
moved to ou=mktg, o=airius.com) is preprended to the new location, resulting in
ou=advertising, ou=mktg, o=airius.com.

156 Creating and Maintaining Information

// Compose new DN of RDN plus new parent

String[] rdns =

LDAPDN.explodeDN(entry.getDN(), false);

String newDN = rdns[0] + "," + parentDN;

// Create entry object with new DN and old attributes

LDAPEntry newEntry =

new LDAPEntry(newDN, entry.getAttributeSet());

// See if there are any children

LDAPSearchConstraints cons =

ld.getSearchConstraints();

cons.setBatchSize(0); // Get all at once

LDAPSearchResults res =

ld.search(dn,

ld.SCOPE_ONE,

"objectclass=*",

ATTRS,

false,

cons);

// Recurse on entries under this entry - if any

System.out.println("Copying DN:" + dn +

" to -> " + newDN);

The following code handles single entry situations in which the original entry
must be deleted to prevent a constraint violation.

if (!res.hasMoreElements()) {

// Single entry, so delete original first to

// avoid constraint violations (duplicate uid)

if (doMove) {

ld.delete(dn);

try {

ld.add(newEntry);

} catch (LDAPException ldape) {

// Error adding new entry, so put old

// one back

System.out.println("Could not add " +

"new entry, " +

"restoring old " +

"one");

ld.add(entry);

}

}

Renaming an Entry: Modifying the RDN 157

} else {

// This is a branch node, so copy it

if (doMove) {

ld.add(newEntry);

}

while (res.hasMoreElements()) {

// Recurse on moving all children

try {

LDAPEntry theEntry = res.next();

String theDN = theEntry.getDN();

move(theDN, newDN, ld, doMove);

} catch (LDAPReferralException e) {

// Do not follow referrals; just list

// them

System.out.println("Search " +

"reference: ");

LDAPUrl refUrls[] = e.getURLs();

for (int i = 0; i < refUrls.length;

i++) {

System.out.println(

" " + refUrls[i].getUrl());

}

continue;

}

}

}

}

private final static String[] ATTRS = {LDAPv3.NO_ATTRS};

}

Managing Groups

Groups allow reference to numerous entries in the directory under a common head-
ing. The primary use of groups has been to simplify access control to services. It is far
simpler to say the Accounting group has access to a particular resource than to list
twenty or so user IDs that have access. Groups are also used to manage and maintain
mailing lists for e-mail distribution.

The basic type of group is the static group. A static group is an entry within the
directory with the object class groupOfUniqueNames, which contains a multivalued
attribute of uniqueMember, or one with the object class groupOfNames, which con-

158 Creating and Maintaining Information

tains a multivalued attribute of member. The multivalued attribute contains the DN of
each entry that is a member of the group. Figure 6-9 shows an example of a static
group.

Netscape Directory Server supports an additional type of group: the dynamic
group. A dynamic group does not store each entry within the group; rather it stores
zero or more LDAP URLs in an attribute called memberUrl. Each LDAP URL contains
a search expression, a base DN, and a scope, which are used to dynamically build the
member list when the group is queried. For example, if we want a group for everyone
located in Cupertino, we can build an LDAP URL that looks like this:

ldap:///o=airius.com??sub?(&(objectclass=person)(l=cupertino))

Note that no host or port is specified. A dynamic group is evaluated within the
context of the server where it is defined.

A dynamic group has the object class groupOfUrls and a memberUrl attribute
(Figure 6-10).

Although the two forms of group definition appear very flexible, there are some
issues with each.

A static group can become large and unwieldy for many members. In addition,
the smallest cache unit in many directory servers is an entry; therefore, the whole
group must be brought into the server’s cache for a search that involves a group or a
search in which a group’s members must be inspected to determine if the client has
access rights derived from the group. For a group with more than a couple thousand
members, this requirement can affect cache performance in a negative way. The other
disadvantage is that the directory server cannot sort attribute values, but only entries.
Therefore, the client must sort the members of a group.

Dynamic groups hold some promise in fixing these problems, but they do not
help in the area of random subsets. For example, if you wanted to add just bjensen

Managing Groups 159

dn: cn=static, ou=People, o=airius.com

objectclass: top

objectclass: groupOfUniqueNames

cn: static

uniqueMember: uid=bjensen, o=Airius.com

uniqueMember: uid=tdahbura, ou=People, o=airius.com

uniqueMember: uid=jackdoe, ou=People, o=airius.com

FIGURE 6-9. A static group.

and jackdoe to a dynamic group, and no others, you could formulate an LDAP URL
as follows:

ldap:///o=airius.com??sub?(|(uid=bjensen)(uid=jackdoe))

But if you wanted to add tdahbura, a third element would need to be added to
the filter expression. If a dozen more individual members then needed to be added—
well, you get the picture!

The way to work around this particular dilemma is to combine dynamic groups
with the use of an attribute in user entries. There is no standard for such an attribute,
but in this discussion we will call it memberOf. The memberOf attribute is a multivalued
attribute that is placed on individual records and combines with the power of the
LDAP URL to form concise dynamic groups. Let’s look at an example.

User Babs Jensen is defined as shown in Figure 6-11. We now define our dynamic
group as in Figure 6-12.

The granular control of user acceptance into the group (typical of a static group)
is combined with the power to dynamically build the searches for group membership.
Together these capabilities provide a flexible means of handling mail lists, access con-
trol, and any service in which the determining factor is not the individual user ID, but
rather the role of the user.

The memberOf attribute is not a standard, and it is not defined for inetOrgPerson.
In order to use it, you must add a definition of the attribute to the server, include the

160 Creating and Maintaining Information

dn: cn=dynamic, ou=People, o=airius.com

objectclass: top

objectclass: groupOfUrls

cn: dynamic

memberUrl: ldap:///o=airius.com??sub?(&(objectclass=person) (cn=*))

memberUrl: ldap:///o=airius.com??sub?(&(objectclass=person) (l=california*))

FIGURE 6-10. A dynamic group.

dn: uid-bjensen, ou=People, o=airius.com

memberOf: mktg602

memberOf: sales754

FIGURE 6-11. Babs Jensen defined as memberOf.

attribute in a new objectclass definition, and add the object class to any entry that is
to become a member of a group. Some LDAP servers may already include the mem-
berOf attribute.

Adding a User to a Group

The following code fragment adds a user to a static group.

LDAPAttribute mbr1 =

new LDAPAttribute("uniqueMember",

"uid=bjensen,ou=People,o=airius.com");

LDAPModification mod =

new LDAPModification(LDAPModification.ADD, mbr1);

ld.modify("cn=static,ou=People,o=airius.com", mod);

The following code fragment adds a user to a dynamic group that is using the
memberOf paradigm.

LDAPAttribute mbrgrp =

new LDAPAttribute("memberOf",

"cn=dynamic,ou=People,o=airius.com");

LDAPModification mod =

new LDAPModification(LDAPModification.ADD, mbrgrp);

ld.modify("uid=bjensen,ou=People,o=airius.com", mod);

Removing a User from a Group

To delete a user from a dynamic group, you must remove the group from the user’s
memberOf attribute. For example, if you wished to remove Babs Jensen from the
mktg602 group, you would use the following code:

LDAPAttribute mbrgrp =

new LDAPAttribute("memberOf",

Managing Groups 161

dn: cn=mktg602, ou=Groups, o=airius.com

objectclass: top

objectclass: groupOfUrls

cn: mktg602

memberUrl: ldap:///o=airius.com??sub?(memberOf=mktg602)

FIGURE 6-12. A dynamic group that uses memberOf.

"cn=dynamic,ou=People,o=airius.com");

LDAPModification mod =

new LDAPModification(LDAPModification.DELETE, mbrgrp);

ld.modify("uid=bjensen,ou=People,o=airius.com", mod);

To delete Babs Jensen from the static group mktg, you would perform a similar
operation using the following code fragment:

LDAPAttribute mbr1 =

new LDAPAttribute("uniqueMember",

"uid=bjensen,ou=People,o=airius.com");

LDAPModification mod =

new LDAPModification(LDAPModification.DELETE, mbr1);

ld.modify("cn=static,ou=People,o=airius.com", mod);

Using the LDAPIsMember Bean

We will discuss the use of JavaBeans in detail in Chapter 10. Here, however, the
LDAPIsMember JavaBean can provide some useful services for our discussion of
groups. LDAPIsMember is a nonvisual JavaBean for determining group membership.
It can be run at the command line or used within your Java programs. You may
want to read the source code for the Bean to see how it handles lookups of static and
dynamic groups. To execute the Bean at the command prompt, use the following
command:

java netscape.ldap.beans.LDAPIsMember <host> <port> <group DN> <user DN>

The following example checks whether Babs Jensen is a member of the group
mktg602:

java netscape.ldap.beans.LDAPIsMember localhost 389 "cn=mktg602,

ou=groups,o=airius.com" "uid=bjensen,ou=People,o=airius.com"

The output from the program is a simple string: either Is a member or Not a
member, depending on group membership. The following code sample shows how the
Bean is used within a Java application.

LDAPIsMember bean = new LDAPIsMember("localhost", 389,

"uid=bjensen,ou=People,o=airius.com",

"", "cn=VPs,ou=groups,o=airius.com");

if (bean.isMember())

// is a member of the VP group

162 Creating and Maintaining Information

Conclusion

This chapter has demonstrated how to add, modify, and delete data in LDAP directo-
ries. We have presented some stand-alone examples of code for handling tasks such as
inserting photographs into the directory. In addition, we have presented complete pro-
grams to move or delete an entire subtree. All these programs are strong tools in the
arsenal of the LDAP programmer. The final discussion focused on the use of groups,
both static and dynamic, for managing at a less granular but more powerful and
expressive level than that of individual users. Armed with the information from this
chapter, you should have no trouble writing applications that update and maintain
LDAP directory content.

Conclusion 163

At this point you know how to write LDAP clients that perform most of the basic
operations. You can write clients that search, add, modify, and delete entries in

the directory.
You probably want most users to be able to make changes to only a subset of

records, if any, rather than to the entire directory. To control access to the directory
and restrict the permissions to add, modify, and delete entries, you can set up access
control lists in the directory server. When LDAP clients authenticate to the server, the
directory server can then determine whether or not the client is allowed to add, mod-
ify, or delete a particular entry.

You may also want to prevent outsiders from eavesdropping on communications
between your LDAP clients and the directory server. You can configure the LDAP
client and the directory server to communicate over a secure network connection.

In this chapter you will learn how to set up access control lists in your directory.
You will also learn the different methods of authentication. Finally, you will learn
how to set up communication over Secure Sockets Layer (SSL).

No Standards for Access Control

Access control in LDAP is an area not yet covered by a standards document, and each
server vendor has its own way of expressing and configuring the rights that users have
to directory entries. A working group in the IETF is developing a standard syntax for
access control, as well as a protocol for querying the access rights that are applicable
to a directory entry, but it will probably be years before LDAP servers from different
vendors can exchange access control information.

Neither Novell Directory Services (NDS) nor Microsoft’s Active Directory
allows you to configure or query the state of access control over LDAP. Both require

Securing
the Data

165

C H A P T E R 7

the use of proprietary APIs and protocols, or special administration tools, to view and
update access control on the directory tree. OpenLDAP uses the same mechanism that
the University of Michigan LDAP server used to define access rights: access control
statements in a server configuration file.

Netscape Directory Server stores access control instructions (ACIs) inside the
directory itself. Every entry can have a set of rules that define an ACI for that entry. An
ACI appears as an attribute in the entry like any other one, so it can be retrieved over
LDAP by searching, or it can be added, updated, or deleted with an LDAP modify
operation. An ACI can appear in an LDIF file for import into a server, and it can be
transmitted to another server during replication. In this chapter we will take a closer
look at how this type of access control works and can be configured.

Although the syntax for expressing ACIs in Netscape Directory Server is differ-
ent from the syntax that is currently under discussion in the IETF, the functionality is
similar. The basic model for hierarchical access control evaluation described in the
next section is valid for most directories, including those that do not store ACIs in the
directory entries themselves.

Setting Up an Access Control List

An entry may have no ACIs, one ACI, or many ACIs. ACIs allow or deny permissions
to entries. When the directory server processes an incoming request for that entry, the
server uses the ACIs for the entry to determine whether or not the LDAP client has
permission to perform the requested operation.

An ACI on an entry affects all the entries in the directory tree that are beneath that
entry. For example, an ACI on the o=airius.com entry in the sample directory provided
on the CD-ROM that accompanies this book affects all entries under that entry, includ-
ing ou=Groups, o=airius.com and uid=bjensen, ou=People, o=airius.com.

If one ACI allows access to an entry and another ACI denies access, the ACI that
denies access takes precedence. For example, suppose an LDAP client attempts to
write to the ou=Groups, o=airius.com entry. If an ACI on o=airius.com denies
write permission but an ACI on ou=Groups, o=airius.com allows write permission,
the server complies with the former ACI, which denies permission, since “deny” over-
rides “allow.”

An ACI specifies the following information:

• The entry (or group of entries) and the attributes affected by the ACI

• The permissions that are allowed or denied for the entry (for example, read
or write permission)

• The bind rule, which identifies the LDAP client authenticating to the server
and the means of authenticating to the server

166 Securing the Data

The permissions for an ACI can be any combination of the following:

• read permissions allow the client to read the entry and any entries beneath
that entry.

• write permissions allow the client to modify the entry and any entries
beneath that entry. In other words, the client can add, modify, and delete
the attributes in that entry.

• search permissions allow the client to search the entry and any entries
beneath that entry. Note that in order to view search results, a client must
have both read and search permissions.

• compare permissions allow the client to compare the entry (and any entries
beneath that entry) against a value submitted in a query.

• selfwrite permissions allow the client to add or delete itself as the value
of an attribute in an entry. This permission is applicable only for managing
group memberships.

• delete permissions allow the client to delete the entry and any entries
beneath that entry.

• add permissions allow the client to add new entries beneath the entry.

• proxy permissions allow the client to assume the identity of another user
while executing an operation at or beneath the entry.

The bind rule (“bind” here refers to “binding,” or authenticating, to the server)
specifies the following types of authentication requirements:

• The users and groups that have access

• The methods of authentication allowed

• The hosts or domains that have access

• The period of time access is allowed (in other words, the starting and end-
ing times for the client’s access to the entry)

The bind rule, in conjunction with the permissions settings, defines access to the
entry. For example, an ACI can allow write permissions only to clients that authenti-
cate as members of the HR Managers group during the workday (9:00 A.M. to 5:00
P.M.). The ACI can also specify access only if the client’s IP address falls within a cer-
tain subnet.

The set of ACIs under a suffix (such as the o=airius.com suffix for your sample
directory) make up an access control list. You can use Directory Server Console to
view and modify the ACIs in the access control list for your sample directory.

Setting Up an Access Control List 167

To see the ACIs for the sample directory, do the following:

1. Start Netscape Console, log in as the Directory Manager (for example,
cn=Directory Manager), and launch Directory Server Console. For de-
tailed steps, see Chapter 4 and the Netscape Directory Server Administra-
tor’s Guide.

2. Click the Directory tab to view the contents of the directory. The suffix for
the sample directory (o=airius.com) should appear in the left pane.

3. Expand the o=airius.com node to display the People entry, right-click on
the People entry, and choose Set Access Permissions to display the ACIs for
the entry (see Figures 7-1 and 7-2).

4. Double-click on one of the ACIs to display the Set Access Permissions dia-
log box for that ACI (see Figure 7-3). This dialog box lists the rules in the
ACI that define the permissions and bind information for the ACI. You can
double-click on any cell to change the settings for that cell. For example,
you can double-click on the Host cell for a rule to specify restrictions on the
LDAP client’s host name or IP address.

168 Securing the Data

FIGURE 7-1. Selecting an entry to view ACIs.

Setting Up an Access Control List 169

FIGURE 7-2. Viewing the ACIs for an entry.

FIGURE 7-3. Viewing an ACI.

5. Click Cancel to close the dialog boxes.

In the sample database, most of the ACIs are set on branches in the directory
tree, as opposed to individual entries in the tree. You should review the ACIs for
o=airius.com; ou=People, o=airius.com; and other branches in the directory tree.

The ACIs for the o=airius.com entry include the following:

• An ACI that allows anyone read, search, and compare permissions to all
attributes except the userPassword attribute (allowing any user to perform
anonymous searches).

• An ACI that allows members of the Directory Administrators group
(ldap:///cn=Directory Administrators, ou=Groups, o=airius.com)
all permissions to all attributes (allowing the directory administrators to
manage the directory). In the ACI, subjects of permissions are expressed
with an LDAP URL. LDAP URLs will be discussed in detail in Chapter 15.
When used in an ACI, an LDAP URL starts with the protocol specification
“ldap://” followed immediately by another forward slash (since ACIs
always apply to the server on which they are defined), and then the DN of a
directory entry or one of the keywords self, anyone, or all. In this case,
the DN is that of the Directory Administrators group.

The ACIs for the ou=People, o=airius.com entry include the following:

• An ACI that allows a user write permissions to the userPassword,
telephoneNumber, and facsimileTelephoneNumber attributes of the
user’s entry. For example, the user bjensen can change the values of these
attributes for the uid=bjensen entry.

• An ACI that allows members of the Accounting Managers group (ldap:///
cn=Accounting Managers, ou=Groups, o=airius.com) write permis-
sions to all attributes except cn, sn, and uid in the entries that have the
attribute ou=Accounting (allowing the Accounting managers to modify
entries that belong to the Accounting organizational unit).

• An ACI that allows members of the HR Managers group (ldap:///cn=HR
Managers, ou=Groups, o=airius.com) write permissions to all attributes
except cn, sn, and uid in the entries that have the attribute ou=Human
Resources (allowing the Human Resources managers to modify entries
that belong to the Human Resources organizational unit).

• An ACI that allows members of the QA Managers group (ldap:///cn=QA
Managers, ou=Groups, o=airius.com) write permissions to all attributes

170 Securing the Data

except cn, sn, and uid in the entries that have the attribute ou=Product
Testing (allowing the Quality Assurance managers to modify entries that
belong to the Product Testing organizational unit).

• An ACI that allows members of the PD Managers group (ldap:///cn=PD
Managers, ou=Groups, o=airius.com) write permissions to all attributes
except cn, sn, and uid in the entries that have the attribute ou=Product
Development (allowing the Product Development managers to modify
entries that belong to the Product Development organizational unit).

The ACIs for the cn=config entry include the following:

• An ACI that allows all permissions to all attributes to members of the
Configuration Administrators group (ldap:///cn=Configuration
Administrators, ou=Groups, ou=TopologyManagement, o=NetscapeRoot).

• An ACI that allows the Configuration Administrator (ldap:///uid=admin,
ou=Administrators, ou=TopologyManagement, o=NetscapeRoot) all per-
missions to all attributes.

• An ACI that allows members of the Local Directory Administrators group
(ldap:///ou=Directory Administrators, o=MyDomain.com) all permissions
to all attributes.

• An ACI that allows members of the SIE (Server Instance Entry) group
(ldap:///cn=slapd-MyHostName, cn=Netscape Directory Server,

cn=Server Group, cn=MyHostName.MyDomain.com, ou=MyDomain.com,

o=NetscapeRoot) all permissions to all attributes. This ACI is for the case
in which more than one server is administered centrally, with information
about each server stored in a particular directory server called the Configu-
ration Directory. Each server has an SIE in the Configuration Directory
that allows the delegation of administration rights for the server. An
administrator can allow a user to administer a particular server by adding
her DN to the SIE group.

In Netscape Directory Server, the cn=config entry stores critical configuration
information. Modifying attributes of the entry generally causes the changed configu-
ration to take effect immediately, allowing the server to be managed and administered
over LDAP.

Note that the ACIs for each entry affect the given entry and any entries below
that entry in the directory hierarchy. For example, suppose ACI 1 is applied to the
o=airius.com entry and allows write permission to all attributes in all entries for
members of the Directory Managers group. And suppose ACI 2 is applied to the

Setting Up an Access Control List 171

ou=People, o=airius.com entry and denies write permission to all attributes for
members of the Directory Managers group. This means that directory managers can
modify entries anywhere in the o=airius.com directory hierarchy except for the
entries under ou=People, o=airius.com (see Figure 7-4).

For more information on setting up ACIs for entries in the directory, see the
Netscape Directory Server Administrator’s Guide.

Viewing Access Control Lists through LDAP

In Netscape Directory Server, the ACIs for an entry are defined in the aci attribute of
the entry. For example, if you search the o=airius.com entry for the aci attribute
using the command

java LDAPSearch -b "o=airius.com" -s base "objectclass=*" aci

the search returns the following lines:

dn: o=airius.com

aci: (target ="ldap:///o=airius.com")(targetattr !="userPassword")

(version 3.0;acl "Anonymous read-search access";allow

(read, search, compare)(userdn = "ldap:///anyone");)

aci: (target="ldap:///o=airius.com") (targetattr = "*")

(version 3.0; acl "allow all Admin group"; allow(all)

groupdn = "ldap:///cn=Directory Administrators, ou=Groups,

o=airius.com";)

172 Securing the Data

o=airius.com

ou=Groups

cn=Directory Administrators

ou=People

uid=xxx

Scope of
ACI 2

Scope of
ACI 1

FIGURE 7-4. Scope of ACIs in the sample directory.

Note that this syntax is specific to Netscape Directory Server. No standards cur-
rently exist for ACIs in LDAP directories.

The value of the aci attribute has the following syntax:

aci: (<target>)(version 3.0;aci "<name>";<permissions><bind rule>;)

The keyword target identifies the entries and attributes that you want to con-
trol access to. You can specify the target with the following syntax:

(target = "ldap:///<dn of entry>")(targetattr [=|!=]

"<attributes>")(targetfilter = "<LDAP search filter>")...

Use the keyword target to specify the top-level entry that you want to control.
For example, to specify an ACI for all entries under ou=People, o=airius.com,
define the target as follows:

aci: (target ="ldap:///ou=People, o=airius.com")...

If you want to apply the ACI to only some of the entries in the directory hierar-
chy, use the keyword targetfilter. For example, to specify an ACI for all entries
under ou=People, o=airius.com that have the attribute ou=Accounting, define the
target filter as follows:

aci: (target ="ldap:///ou=People, o=airius.com")...(targetfilter =

"(ou=Accounting)")

To allow or deny access to specific attributes within an entry, use the keyword
targetattr. Use the operator != if you want to specify all attributes except a selected few.
To specify a list of attributes, use the || operator as a delimiter. For example, to apply the
ACI to all attributes except cn, sn, and uid, specify the following target attributes:

aci: (target ="ldap:///ou=People, o=airius.com")

(targetattr != "cn || sn || uid")

(targetfilter = "(ou=Accounting)")

For keywords target, targetfilter, and targetattr, you can specify asterisks
as wild cards (for example, target = "ldap://uid=*, ou=*, o=airius.com")
except in the suffix (o=airius.com).

“Permissions” specifies the list of permissions that are allowed or denied by this
ACI. The syntax for permissions is:

allow|deny (<list of permissions>)

Viewing Access Control Lists through LDAP 173

The list of permissions can be read, write, search, compare, selfwrite,
delete, add, proxy, or all (the last option is for all permissions except proxy, which
must be granted explicitly). See the previous section for a description of these permis-
sions. If you specify more than one permission, use a comma to delimit them.

For example, the following ACI allows read, search, and compare permissions
to entries under o=airius.com, except for the userPassword attribute.

aci: (target ="ldap:///o=airius.com")(targetattr !="userPassword")

(version 3.0;acl "Anonymous read-search access";

allow (read, search, compare)

(userdn = "ldap:///anyone");)

“Bind rule” specifies the authentication requirements for this ACI. Two of the
common bind rules are rules based on user DNs and group DNs. Many of the ACIs in
the sample directory allow access to only a specific user or group. To deny or allow
access by user or group, use the keywords userdn and groupdn:

(userdn = ldap:///<dn>)

(groupdn = ldap:///<dn>)

For userdn, you can also specify the following values:

• ldap:///self applies the ACI to the user’s own entry. You can use this
bind rule to write ACIs that allow users to modify their own entries.

• ldap:///all applies the ACI if the user has authenticated. You can use this
bind rule to restrict access for users who do not authenticate.

• ldap:///anyone applies the ACI without requiring the user to authenti-
cate. You can use this bind rule to set up anonymous access to entries (for
example, to allow anonymous searches).

To apply the ACI to more than one DN, use the operator ||. To apply the ACI to
all DNs except the specified DN, use the operator !=.

The rest of this section illustrates ACIs in the sample directory. An explanation
follows each example.

aci: (target="ldap:///o=airius.com") (targetattr = "*")

(version 3.0; acl "allow all Admin group";

allow(all) groupdn = "ldap:///cn=Directory Administrators,

ou=Groups, o=airius.com";)

This ACI allows all permissions to users who authenticate as members of the
Directory Administrators group. These users have all permissions to all attributes
of all entries under o=airius.com.

174 Securing the Data

aci: (target ="ldap:///ou=People, o=airius.com")

(targetattr ="userPassword || telephoneNumber

|| facsimileTelephoneNumber")

(version 3.0;acl "Allow self entry modification";

allow (write)(userdn = "ldap:///self");)

This ACI allows users the permission to write to the telephoneNumber,
userPassword, and facsimileTelephoneNumber attributes of their own entries.

aci: (target ="ldap:///ou=People, o=airius.com")

(targetattr !="cn || sn || uid")

(targetfilter ="(ou=Accounting)")

(version 3.0;acl "Accounting Managers Group Permissions";

allow (write)(groupdn = "ldap:///cn=Accounting

Managers,ou=Groups,o=airius.com");)

This ACI allows members of the Accounting Managers group to modify all
attributes (except cn, sn, and uid) of the entries under o=airius.com that have the
attribute ou=Accounting.

For more information on ACI syntax, see the Netscape Directory Server Admin-
istrator’s Guide.

Modifying Access Control Lists through LDAP

In Netscape Directory Server, since ACIs are defined in the aci attribute of entries,
you can modify the ACIs for an entry by adding, modifying, or deleting values from
the aci attribute.

The following section of code illustrates how you can use the LDAPConnection.
modify method to add an ACI to an entry.

String ENTRYDN = "ou=People, o=Airius.com";

String ACI = "(target =\"ldap:///ou=People,o=airius.com\")" +

"(targetattr =\"roomNumber\")" +

"(targetfilter =\"(ou=Product Development)\")" +

"(version 3.0;" +

"acl \"Allow all to modify room number\";" +

"allow (write) userdn = \"ldap:///all\";)";

LDAPConnection ld = new LDAPConnection();

try {

// Connect to server

ld.connect(3, "localhost", 389,

"cn=directory manager", "secret");

LDAPModification mod =

Modifying Access Control Lists through LDAP 175

new LDAPModification(LDAPModification.ADD,

new LDAPAttribute("aci", ACI));

ld.modify(ENTRYDN, mods);

System.out.println("Entry modified");

} catch(LDAPException e) {

System.out.println("Unable to modify " + ENTRYDN + ", " + e);

}

Authenticating to the Directory

Now that you know how to set up access control on the directory server and have
reviewed the existing ACIs in the sample directory, you can determine how you want
your LDAP clients to authenticate to the directory.

You can authenticate using one of the following methods:

• Simple, password-based authentication. In this method, your client sends a
DN and password to the directory server. Note that the DN and password
are normally sent in the clear (unencrypted) over the network, so this method
should be avoided if possible unless the network connection is secure (for
example, if it uses SSL for encryption, or if it is an internal network).

• Certificate-based authentication. In this method, your client connects to the
directory server over Secure Sockets Layer (SSL). Your client provides a
digital certificate to the directory server as identification.

• Authentication using SASL mechanisms. SASL (Simple Authentication and
Security Layer) is a proposed standard for pluggable authentication,
including authentication based on means other than those used in simple
authentication and certificate-based authentication.

Although all three types of authentication theoretically should work with any
LDAP client SDK and any LDAP server that supports them, in reality there is very little
interoperability with SSL authentication. Slight differences in protocol or configuration
have so far prevented servers and clients from different vendors from authenticating
with SSL. Simple authentication, on the other hand, works well with all servers and
clients. SASL is not yet available widely enough to evaluate its interoperability.

With Netscape Directory Server, you can set up ACIs for entries to require cer-
tain methods of authentication. To set the method for an entry, do the following:

1. Under the Directory tab in Directory Server Console, right-click on a direc-
tory entry and choose Set Access Permissions to display the list of ACIs for
the entry.

176 Securing the Data

2. Double-click on an ACI or click New to display the Set Access Permissions
dialog box.

3. Double-click on a cell under the User/Group column to display the Select
Users And Groups dialog box. At the bottom of this dialog box is the
Authentication Method pop-up menu, which allows you to specify the
authentication method required for this rule.

The rest of this chapter will describe the different authentication methods in
more detail.

Using Password-Based Authentication

The LDAP protocol provides a bind operation to allow clients to authenticate to the
server. The simplest authentication method supported by the protocol is a method
that allows the client to send a DN and password to the server.

In order to use the simple authentication method, you can invoke the
LDAPConnection.authenticate method or an LDAPConnection.connect method
variant that takes an authentication DN and password as parameters. Some of the
possible exceptions that can be thrown include the following:

• LDAPException.NO_SUCH_OBJECT. This exception is thrown if the DN you
specify does not correspond to an entry in the directory.

• LDAPException.INVALID_CREDENTIALS. This exception is thrown if the
password you specify is not correct.

Below is a section of an application that uses simple authentication to authenti-
cate to the directory server as the user uid=bjensen, ou=People, o=airius.com.

try {

String MY_HOST = "localhost";

int MY_PORT = 389;

String MY_DN = "uid=bjensen,ou=People,o=airius.com";

String MY_PASSWORD = "hifalutin";

LDAPConnection ld = new LDAPConnection();

// Connect to the directory server

ld.connect(MY_HOST, MY_PORT);

// Use simple authentication. The first argument

// specifies the version of the LDAP protocol used.

ld.authenticate(3, MY_DN, MY_PASSWORD);

Using Password-Based Authentication 177

// Code to perform LDAP operations as the user bjensen

...

} catch(LDAPException e) {

switch(e.getLDAPResultCode()) {

// The DN does not correspond to any existing entry

case e.NO_SUCH_OBJECT:

System.out.println(

"The specified user does not exist: " + MY_DN);

break;

// The password is incorrect

case e.INVALID_CREDENTIALS:

System.out.println("Invalid password");

break;

// Some other error occurred

default:

System.out.println("Failed to authenticate as " +

MY_DN + ", " + e);

break;

}

}

You can call authenticate again to acquire a new identity without disconnect-
ing and reconnecting. Many server applications use this technique to check the cre-
dentials of a client against the directory. They keep one or more connections open to
the directory but attempt to authenticate over it each time a new client provides cre-
dentials.

The preceding example uses the LDAPConnection.authenticate method to
authenticate to the server. You can also pass the DN and password as arguments to
the LDAPConnection.connect method to both connect and authenticate:

ld.connect(3, MY_HOST, MY_PORT, MY_DN, MY_PASSWORD);

As with the authenticate method, the first argument in the connect method
specifies the version of the LDAP protocol. The default is 2.

Note that this method of authentication sends the password in the clear over the
network. Unless the client is using a secure network connection to the server, you may
want to use a more protected method of authentication.

Communicating over Secure Sockets Layer

The Secure Sockets Layer (SSL) protocol is intended to provide privacy and integrity
between two communicating applications. SSL is designed to sit above a transport
protocol (such as TCP) and below application protocols (such as LDAP). As part of

178 Securing the Data

the SSL Handshake Protocol, a client and server can identify themselves to each other
by using digital certificates. Note that the use of certificates for authentication is
optional; a client and server can use SSL and still use the standard password-based
method of authentication.

A standard has been defined for initiating an SSL session in LDAP. The standard
specifies that a nonsecure session can become an SSL session if the client requests
startTLS. TLS stands for Transport Layer Security, and it is the more recent term for
SSL, as well as the one used in standards documents. Once an SSL session has been
initiated, the session cannot revert to being nonsecure. However, startTLS has not
been widely implemented at the time of this writing.

Netscape Directory Server can authenticate and encrypt a session with SSL, but
it does so on a separate port from the nonsecure sessions. Whereas 389 is the standard
port for nonsecure connections, 636 is the standard for SSL connections. In the fol-
lowing examples, the client immediately begins an SSL session with the server at the
secure port when calling LDAPConnection.connect. There is no startTLS step.

To connect to the directory server over SSL, do the following:

1. Set up the directory server to accept connections over LDAPS (the LDAP
protocol that runs over SSL).

Netscape Directory Server supports LDAPS. To configure the directory
server to use LDAPS, you will need to get a certificate for the server (either
from a trusted certificate authority or from your own certificate server), install
the certificate, and trust the certificate authority that issued the certificate. You
will also need to specify the ciphers you want used for encryption.

For information on setting up Netscape Directory Server to use
LDAPS, see the Netscape Directory Server Administrator’s Guide. For
information on setting up LDAPS in other servers, see the Web site for each
vendor (listed in Appendix A).

2. Obtain a Java class that implements SSL sockets (for example, Phaos Tech-
nology provides a class in their SSLava Toolkit: crysec.SSL.SSLSocket).

Directory SDK for Java includes an interface for creating sockets
(LDAPSocketFactory) and two classes that implement that interface for
SSL sockets (LDAPSSLSocketFactory and LDAPSSLSocketWrapFactory).

Note that these classes do not implement SSL sockets on their own.
Both classes expect you to specify the name of a class that implements
SSL sockets. LDAPSSLSocketFactory and LDAPSSLSocketWrapFactory
use that specified class to construct an SSL socket. You must find and
import a class that implements the createSocket method of the
javax.net.ssl.SSLSocket abstract class.

If the class that implements SSL sockets extends the Socket class, use
the LDAPSSLSocketFactory class to create the SSL socket. If the class does

Communicating over Secure Sockets Layer 179

not extend the Socket class (for example, if it extends the Object class),
use the LDAPSSLSocketWrapFactory class instead.

Note that Netscape Navigator 4.05 and more recent versions include
the netscape.net.SSLSocket class, which implements SSL sockets. If you
are writing a Java applet that will run in Navigator, you can use this class.

To connect to the directory server over SSL, your LDAP client needs to do the
following:

1. Construct a new LDAPSSLSocketFactory object or a new LDAPSSLSocket
WrapFactory object. You need to specify the name of the class that
implements SSL sockets. If you are writing a Java applet that runs in
Netscape Navigator 4.05 or later, you can omit the class name. The
netscape.net.SSLSocket class is used by default. Construct a new
LDAPConnection object, passing in the LDAPSSLSocketFactory or
LDAPSSLSocketWrapFactory object.

2. Invoke the LDAPConnection.connect method to establish a connection to
the server over LDAPS.

For example, the following section of code uses the SSLava package from Phaos
Technology to implement SSL sockets.

import netscape.ldap.*;

import crysec.SSL.*;

...

LDAPConnection ld = null;

try {

Object cipherSuite = SSLParams.getCipherSuite();

ld = new LDAPConnection(

new LDAPSSLSocketFactory("crysec.SSL.SSLSocket",

cipherSuite));

ld.connect("localhost", 636);

ld.authenticate(3, "uid=bjensen,ou=People,o=airius.com",

"hifalutin");

} catch (LDAPException e) {

System.out.println(e);

}

In this case an SSL session was established, and then the client used simple pass-
word authentication. It was safe to pass the password over the wire because the ses-
sion was encrypted.

When the client called ld.connect, the SSLava classes started SSL negotiations
with the server. The server sent a certificate to assert its identity. However, the client

180 Securing the Data

(in this case) has not prepared a certificate database and appropriate callbacks for the
SSLava classes so that it can validate the certificate against those it already knows
about. The client is trusting the server to be what it says it is.

See http://www.phaos.com/ for information on configuring SSLava to validate
server certificates.

Using Certificate-Based Authentication

If you are connecting over SSL, you can use digital certificates to authenticate your
LDAP client to the directory server. In certificate-based client authentication, the
directory server requests a certificate from the client during the handshake portion of
the protocol. The client sends a certificate that identifies itself (using a DN in the cer-
tificate) to the server. The server examines the certificate to determine if it trusts the
certificate authority that issued the certificate. The server then determines if the DN in
the certificate corresponds to a user in the directory. If these steps complete success-
fully, the client is authenticated.

As part of the SSL Handshake Protocol, the server can also send a certificate to
identify itself back to the client. The client can then determine if it trusts the authority
that issued the server’s certificate.

Note that Directory SDK for Java supports certificate-based authentication
when either of the following conditions is met:

• You are writing a Java applet that will run in a Netscape browser.

• You are using a class that implements the LDAPSocketFactory interface
and that supports the use of certificate-based authentication.

If you are writing an applet that will run in Netscape Navigator, you use the
classes LDAPSSLSocketFactory and netscape.net.SSLSocket to create SSL sockets.
These classes use the browser’s certificate database to provide authentication and to
determine if the applet trusts the server’s digital certificate. Be sure to do the following:

• In the client’s certificate database, include the certificate of the directory
server or the certificate of the certificate authority (CA) that issued the
server’s certificate. If there is a hierarchy of CAs above the CA that issued
the server’s certificate, you can include the certificate of any of the CAs. The
CA certificate that you include in the certificate database should be marked
as “trusted” by the browser.

• In the client’s certificate database, you should also include the certificate for
the client. This is the certificate that the applet will send to the directory
server for authentication. The subject DN in the certificate should corre-
spond to a user in the directory.

Using Certificate-Based Authentication 181

• In the certificate database for the directory server, make sure that the CA
that issued the client certificate is marked as “trusted.”

• Configure the directory server to map the subject DN from the certificate to
an entry in the directory. As part of this process, you may also want to
include the actual certificates of users in the directory. If you configure
Netscape Directory Server to check the client’s certificate against the certifi-
cate of the user in the directory, the server compares the client’s certificate
against the userCertificate attribute of the entry for the user.

For information on setting up the directory server to use certificate-based
authentication, see the Netscape Directory Server Administrator’s Guide.

After you set up the browser’s certificate database and the directory server, you
can enable your applet to use certificate-based authentication by doing the following:

1. Construct a new LDAPSSLSocketFactory object. You do not need to
specify the name of a class that implements SSL sockets. By default,
LDAPSSLSocketFactory uses the class netscape.net.SSLSocket, which is
included in Netscape Navigator 4.05 and later versions of the browser.

2. Invoke the LDAPSSLSocketFactory.enableClientAuth method to set up
the factory for certificate-based authentication.

3. Construct a new LDAPConnection object, passing in the
LDAPSSLSocketFactory object.

4. Invoke the LDAPConnection.connect method to establish a connection to
the directory server over LDAPS. As part of this process, the directory
server (if set up correctly) requests a certificate from your applet. Your
applet retrieves the certificate from the browser’s certificate database and
sends the certificate to the server.

LDAPSSLSocketFactory fac = new LDAPSSLSocketFactory();

fac.enableClientAuth();

LDAPConnection ld = new LDAPConnection(fac);

try {

ld.connect("localhost", 636);

} catch (LDAPException e) {

}

Using SASL Authentication

RFC 2222 (“Simple Authentication and Security Layer”) proposes a method for
adding authentication support to connection-based protocols. The protocol (LDAP in
this case) supports a command to identify and authenticate a user to the server.

182 Securing the Data

The command requires that you specify the name of the mechanism to use for
authentication. Netscape Directory Server supports the use of SASL mechanisms
through server plug-ins. You can write a server plug-in that handles authentication
through a SASL mechanism. SASL mechanisms are registered with the IANA (Internet
Assigned Numbers Authority) and have names such as “CRAM-MD5,” “GSSAPI,”
and “KERBEROS_V4.” The same mechanism can be used with many protocols—
LDAP, IMAP (Internet Message Access Protocol), ACAP (Application Configuration
Access Protocol), and so on.

If the directory server supports the SASL mechanism, it can issue a challenge to
the LDAP client. The client sends a response to the challenge. The server and client
can continue to issue a series of server challenges and client responses. During this
process, the directory server sends the LDAP result code SASL_BIND_IN_PROGRESS to
the client. When authentication is completed, the server sends a different LDAP result
code to the client: SUCCESS if authentication succeeded, and an error code such as
INVALID_CREDENTIALS if it failed.

If authentication completes successfully, the client and server may agree on a
security layer to protect the privacy of the session from that point on.

For more information on SASL, you can find RFC 2222 at this location: http://
www.ietf.org/rfc/rfc2222.txt.

Authenticating with SASL in LDAP

In Directory SDK for Java, you can use SASL authentication by choosing one of the
LDAPConnection.authenticate methods with an appropriate signature:

public void authenticate(String dn,

Hashtable props,

CallbackHandler cbh) throws LDAPException

public void authenticate(String dn,

String mechanism,

Hashtable props,

CallbackHandler cbh) throws LDAPException

public void authenticate(String dn,

String mechanisms[],

Hashtable props,

CallbackHandler cbh) throws LDAPException

Specify the arguments as follows:

• mechanism. The name of the SASL mechanism—for example, “GSSAPI.”

• mechanisms. An array of names of acceptable SASL mechanisms—for
example, { “GSSAPI”, “KERBEROS_V4” }. If no mechanisms are speci-
fied, the SDK contacts the server to query its supported mechanisms.

Using SASL Authentication 183

• props. Any optional properties that apply to the mechanism—for ex-
ample, the minimum acceptable encryption strength expressed as a number
of bits, and the name of a package containing an implementation of
SaslClientFactory that can produce a handler for the desired mecha-
nism. The argument may be null if default properties are acceptable. Table
7-1 lists properties that can be specified in props.

• cbh. If the mechanism requires additional credentials or other information
during the authentication process, it will call the CallbackHandler inter-
face that you supply, if you supply a value other than null.

Callbacks in SASL

The Callback interface is defined in the javax.auth.security.callback package,
which is provided with the SDK in jaas.jar. A current version of jaas.jar can be
obtained from http://java.sun.com. The javadoc documentation for the interface
provides the following description of javax.auth.security.callback.Callback-
Handler.

An application implements a CallbackHandler and passes it to underlying secu-
rity services so that they may interact with the application to retrieve specific authenti-

184 Securing the Data

TABLE 7-1. Properties for SASL authentication.

PROPERTY NAME MEANING

“javax.security.sasl.encryption.minimum” Minimum key length; default “0” (no session
protection); “1” means integrity protection only.

“javax.security.sasl.encryption.maximum” Maximum key length; default “256.”

“javax.security.sasl.server.authentication” If server must authenticate to client, then “true”;
default “false.”

“javax.security.sasl.ip.local” IP address in dotted decimal format, for Kerberos
version 4; no default.

“javax.security.sasl.ip.remote” IP address in dotted decimal format, for Kerberos
version 4; no default.

“javax.security.sasl.maxbuffer” Maximum size of security layer frames; default
“0” (client will not use the security layer).

“javax.security.sasl.client.pkgs” A space-separated list of package names to use
when locating a SaslClientFactory interface.

cation data, such as user names and passwords, or to display certain information,
such as error and warning messages.

CallbackHandler interfaces are implemented in an application-dependent fash-
ion. For example, implementations for an application with a graphical user interface
(GUI) may pop up windows to prompt for requested information or to display error
messages. An implementation may also choose to obtain requested information from
an alternate source without asking the end user.

Underlying security services make requests for different types of information by
passing individual Callback objects to the CallbackHandler. The CallbackHandler
implementation decides how to retrieve and display information depending on the
Callback objects passed to it. For example, if the underlying service needs a user name
and password to authenticate a user, it uses a NameCallback and PasswordCallback.
The CallbackHandler can then choose to prompt for a user name and password seri-
ally, or to prompt for both in a single window.

A class that implemented CallbackHandler with support for several different
Callback types in a command-line application environment could look like this:

class SampleCallbackHandler implements CallbackHandler {

SampleCallbackHandler(String userName) {

_userName = userName;

}

/**

* Invoke the requested Callback

*/

public void invokeCallback(Callback[] callbacks)

throws java.io.IOException,

UnsupportedCallbackException {

for (int i = 0; i < callbacks.length; i++) {

if (callbacks[i] instanceof TextOutputCallback) {

// display the message according to the specified STYLE

TextOutputCallback toc = (TextOutputCallback)callbacks[i];

switch (toc.getStyle()) {

case TextOutputCallback.ERROR:

System.out.println("ERROR: " + toc.getMessage());

break;

case TextOutputCallback.INFORMATION:

System.out.println(toc.getMessage());

break;

case TextOutputCallback.WARNING:

System.out.println("WARNING: " + toc.getMessage());

break;

}

Using SASL Authentication 185

} else if (callbacks[i] instanceof TextInputCallback) {

// prompt the user for information

TextInputCallback tic = (TextInputCallback)callbacks[i];

// display the prompt like this:

// prompt [default_reply]:

System.err.print(tic.getPrompt() +

" [" +

tic.getDefaultText() +

"]: ");

System.err.flush();

BufferedReader reader =

new BufferedReader(

new InputStreamReader(System.in));

tic.setText(reader.readLine());

} else if (callbacks[i] instanceof NameCallback) {

((NameCallback)callbacks[i]).setName(_userName);

} else if (callbacks[i] instanceof PasswordCallback) {

// prompt the user for sensitive information

PasswordCallback pc = (PasswordCallback)callbacks[i];

System.err.print(pc.getPrompt() + " ");

System.err.flush();

pc.setPassword(readPassword(System.in));

} else if (callbacks[i] instanceof LanguageCallback) {

// get the language from the locale

LanguageCallback lc = (LanguageCallback)callbacks[i];

lc.setLocale(Locale.getDefault());

} else {

throw new UnsupportedCallbackException

(callbacks[i], "Unrecognized Callback");

}

}

}

/**

* Reads user password from given input stream.

*/

private char[] readPassword(InputStream in) {

// insert code to read a user password from the input stream

}

private String _userName = null;

}

The SASL Framework Classes

An Internet Draft proposes a standard Java API for SASL clients and servers to use
and register mechanisms, and there is an identical proposal to Sun’s Java Community

186 Securing the Data

Process to add the API to the standard Java extensions. Eventually the framework
classes will be available as javax.security.auth.sasl or something similar.

In the meantime, Directory SDK for Java includes com.netscape.sasl, the
package that contains the classes and interfaces that make up the SASL framework.
Sun provides the same interfaces with the LDAP Service Provider for JNDI in the
package com.sun.security.sasl. The Netscape package includes only the mecha-
nism EXTERNAL; the Sun package includes EXTERNAL and CRAM-MD5.

The sasl packages contain a factory class Sasl, with the static methods
createSaslClient and createSaslServer. Protocol-specific clients, such as Direc-
tory SDK for Java, call Sasl.createSaslClient with several parameters to specify
the desired SASL mechanism to use and other requirements for the authentication.
The SaslClient object that is returned by the method can then be used by the SDK to
negotiate authentication and optionally also a security layer.

The Sasl class may be aware of one or more implementations of the
SaslClientFactory interface. Each implementation of SaslClientFactory can pro-
duce a SaslClient object for one or more SASL mechanisms. A savvy client may also
specify a package in which Sasl.createSaslClient can find a SaslClientFactory
interface—for example, a package developed by the vendor of the client. In general,
though, the Sasl middleware layer will manage the choice of factory implementations
itself.

The SASL implementation in the SDK consists of a bind module that calls the
SASL package from certain versions of LDAPConnection.authenticate.

• To select the SASL mechanism or mechanisms you want to use, you can
invoke the LDAPConnection.authenticate method from your application
or applet. LDAPv3 servers publish the SASL mechanisms they support in
the root entry (the entry with a blank DN):

java LDAPSearch -b "" -s base "objectclass=*" supportedsaslmechanisms

dn:

supportedsaslmechanisms: EXTERNAL

Generally a client will let the SDK obtain the list of mechanisms supported by
the server, and let the SDK try each mechanism to find one supported by both the
client SASL framework and the server; however, a client may want to allow
authentication using only one or more specific mechanisms, in which case the
mechanism or mechanisms are specified to LDAPConnection.authenticate.

• Internally, the SDK obtains a SaslClient object that can use the agreed-
upon mechanism to negotiate authentication.

• The SaslClient object is responsible for generating an initial client request
to the server and subsequent responses to challenges from the server. The

Using SASL Authentication 187

SaslClient object is also responsible for providing a security layer for
encoding and decoding data exchanged with the server after completed
authentication, if the client and server agree to use a security layer.

The following procedure and Figure 7-5 illustrate how the SASL framework
processes an authentication request from the SDK.

1. Your LDAP client invokes the LDAPConnection.authenticate method,
passing in the following information:

• The DN of the user for authentication.

• Optionally, the name(s) of the SASL mechanism(s) to use. If they are not
provided, the server is contacted and its supportedSaslMechanisms list is
used for authentication.

188 Securing the Data

LDAP Client

ld.authenticate(DN, SASL_MECHANISM,
PROPERTIES, CALLBACK_HANDLER)

Get a response
to the challenge

Directory Server

Send the
response to
the server

Receive a
SASL BIND IN
PROGRESS result
code and a challenge

Get any initial
response to
send to server

Get a SASL
client

Sasl SaslClient

Receive a
SUCCESS
result code

Check if
authentication
is complete

SaslClientFactory 1

SaslClientFactory 2

Instantiate a
SASL client
with one of
the known
factories

Get input
and output
streams for
the session

FIGURE 7-5. How the SASL framework authenticates.

• A set of properties that apply to the authentication mechanism. One of the
properties may be the name of a package containing a ClientFactory.

• An object that implements the javax.security.auth.callbacks.

CallbackHandler interface. It may be used by the SASL client to obtain
credentials or other information required to complete the authentication
process.

To obtain a SASL client object, the authenticate method invokes the sta-
tic createSaslClient method of the Sasl class, passing in the DN, the set
of properties, the callback handler, the protocol (always “ldap”), and the
host name of the LDAP server. The host name is used only with certain
mechanisms, such as KERBEROS_V4.

To generate the initial SASL request, the authenticate method in-
vokes the createInitialResponse method of the SASL client. The
createInitialResponse method returns the initial SASL authentication
request, or it returns null if the mechanism does not prescribe an initial
request from the client. The authenticate method sends this request to the
server.

2. As the LDAP client receives server “challenges” (which are accompanied
by the LDAP result code SASL_BIND_IN_PROGRESS), the authenticate
method invokes the evaluateChallenge method of the SASL client to
obtain an appropriate response and return it to the server.

3. The SASL client may invoke methods of the callback handler at any time
during authentication to obtain additional required information.

4. When the server has finished authenticating the client, the server sends the
LDAP result code SUCCESS to the client. The authenticate method
invokes the isComplete method of the SASL client to verify that authenti-
cation has completed. If the isComplete method returns true, the SDK
calls getInputStream and getOutputStream so that the SASL client can
insert a security layer if one was negotiated.

Preparing to Use an Existing Mechanism

Directory SDK for Java includes a class for only one mechanism: EXTERNAL. Addi-
tional mechanisms are expected to become available as SASL is more widely used with
LDAP. The EXTERNAL mechanism is used to validate that authentication has been
negotiated by another means—for example, PPP (Point-to-Point Protocol) or SSL.

To use a SASL mechanism for authentication, you need to do the following:

• Ensure that your LDAP server supports the SASL mechanism that
you intend to use. In Netscape Directory Server, you do this by writing a

Using SASL Authentication 189

preoperation bind plug-in for the SASL mechanism. This plug-in should reg-
ister the SASL mechanism, retrieve information from a SASL bind request,
and create a SASL bind response to be sent back to the client. For more infor-
mation, see the Netscape Directory Server Plug-In Programmer’s Guide.

• Write (or find) a class that implements the LDAPClientFactory interface
and can produce a SaslClient object that supports your SASL mechanism,
and name the class ClientFactory. The SaslClient object may also be
able to provide a security layer. Tell the Sasl class to use your factory in
one of the following ways:

• Call Sasl.setClientFactory("mypackage.sasl.ClientFactory"),
substituting the full name of your factory. The factory must be in the
CLASSPATH of the Java Virtual Machine.

• Set the “javax.security.sasl.client.pkgs” property in the props argument
to authenticate, assigning to it the name of the package (not including
“.ClientFactory”) containing your factory.

By calling one of the LDAPConnection.authenticate methods described earlier
in the chapter, you can now use your SASL mechanism. The following LDAP client
code asks the SDK to use the GSSAPI SASL mechanism to authenticate. The package
containing the custom factory is specified in the props argument.

Hashtable props = new Hashtable();

props.put("javax.security.sasl.client.pkgs", "mypackage.sasl");

ld.authenticate("uid=bjensen,ou=People,o=airius.com", "GSSAPI",

props, new SampleCallbackHandler("bjensen"));

The identity to be authenticated is uid=bjensen, ou=People, o=airius.com.
The class mypackage.sasl.ClientFactory can produce an appropriate SaslClient
object. No additional qualifiers are required in this case (the defaults are satisfactory).
The CallbackHandler implementation described earlier in this chapter is used to pro-
vide additional credentials required during authentication.

The rest of this chapter will explain how to create and use your own SaslClient
and ClientFactory classes.

Your Own SaslClient and ClientFactory

Your SASL client class must implement the SASLClient interface. You need to imple-
ment the following methods in your class:

• public String getMechanismName returns the IANA-registered mecha-
nism name of this SASL client (for example, “CRAM-MD5”, “GSSAPI”).

190 Securing the Data

• public byte[] createInitialResponse throws SaslException returns
the initial authentication request that will be sent to the server. Not all
mechanisms involve an initial request from the client. If there is no initial
request, the method returns null.

• public byte[] evaluateChallenge(byte[] challenge) throws

SaslException evaluates a server challenge and returns a response to the
challenge. The return value should be null if (1) the challenge accompa-
nied a SUCCESS status, (2) the challenge contains data only for the client to
update its state, and (3) no response needs to be sent to the server.

• public boolean isComplete returns true if authentication has completed.
The isComplete method should verify that authentication has completed. If
the client still expects another challenge from the server, the isComplete
method should return false. You need to implement this method to handle
cases in which the server incorrectly assumes that the authentication process
is done, and to prevent man-in-the-middle security attacks.

• public InputStream getInputStream(InputStream is) throws

IOException retrieves an input stream for the session. It may return the
same stream that is passed in, if no processing is to be done by the client
object. If a security layer was negotiated, the returned object may incorpo-
rate an encoding or decoding step. This method can be called only if
isComplete returns true. It throws an IOException if the authentication
exchange has not completed or if an error occurred during retrieval of the
stream.

• public OutputStream getOutputStream(OutputStream os) throws

IOException retrieves an output stream for the session. It may return the
same stream that is passed in, if no processing is to be done by the client
object. If a security layer was negotiated, the returned object may incorpo-
rate an encoding or decoding step. This method can be called only if
isComplete returns true. It throws an IOException if the authentication
exchange has not completed or if an error occurred during retrieval of the
stream.

The following class provides support for the ANONYMOUS SASL mechanism. It is
a trivial implementation, since in the ANONYMOUS authentication mechanism the
client simply notifies the server that it wishes to use anonymous authentication but no
challenge-response sequence follows.

package mypackage.sasl.mechanisms;

import java.io.*;

import com.netscape.sasl.*;

Using SASL Authentication 191

/**

* This class provides the implementation of the ANONYMOUS mechanism driver.

* This mechanism is passed in the SASL bind request to request anonymous

* authentication with the server.

*/

public class Anonymous implements SaslClient {

/**

* Default constructor

*/

public Anonymous() {

}

/**

* Retrieves the initial response.

*

* @return null, because anonymous authentication

* does not involve a challenge/response series

* @exception SaslException If an error occurred while creating

* the initial response.

*/

public byte[] createInitialResponse() throws SaslException {

// No initial response for anonymous authentication

return null;

}

/**

* Evaluates the challenge data and generates a response.

*

* @param challenge the non-null challenge sent from the server

*

* @return null, because anonymous authentication

* does not involve a challenge/response series

* @exception SaslException If an error occurred while processing

* the challenge or generating a response.

*/

public byte[] evaluateChallenge(byte[] challenge)

throws SaslException {

// There is no exchange of challenges and responses for

// anonymous authentication

return null;

}

/**

192 Securing the Data

* Returns the name of mechanism driver.

* @return the mechanism name

*/

public String getMechanismName() {

return MECHANISM_NAME;

}

/**

* The method may be called at any time to determine if the

* authentication process is finished.

* @return true if authentication is complete.

* For this class, it always returns true.

*/

public boolean isComplete() {

return true;

}

/**

* Retrieves an input stream for the session. It may return

* the same stream that is passed in, if no processing is to be

* done by the client object.

* This method can be called only if isComplete() returns true.

* @param is the original input stream for reading from the server

* @return an input stream for reading from the server, which

* may include processing the original stream. For this class, the

* input parameter is always returned.

* @exception IOException If the authentication exchange has not

* completed or if an error occurred during retrieval of the stream.

*/

public InputStream getInputStream(InputStream is)

throws IOException {

return is;

}

/**

* Retrieves an output stream for the session. It may return

* the same stream that is passed in, if no processing is to be

* done by the client object.

* This method can be called only if isComplete() returns true.

* @param is the original output stream for writing to the server

* @return an output stream for writing to the server, which

* may include processing the original stream. For this class, the

* input parameter is always returned.

* @exception IOException If the authentication exchange has not

Using SASL Authentication 193

* completed or if an error occurred during retrieval of the stream.

*/

public OutputStream getOutputStream(OutputStream os)

throws IOException {

return os;

}

private final static String MECHANISM_NAME = "ANONYMOUS";

}

Next we need a SaslClientFactory implementation that can produce an
instance of the Anonymous class. It must be named ClientFactory. In this case, the
implementation knows of only one mechanism that it can instantiate: ANONYMOUS.

package mypackage.sasl;

import java.util.Hashtable;

import javax.security.auth.callback.CallbackHandler;

/**

* An interface for creating instances of <tt>SaslClient</tt>.

*

* @see SaslClient

* @see Sasl

*/

public class ClientFactory implements SaslClientFactory {

public ClientFactory() {

}

/**

* Creates a SaslClient using the parameters supplied.

*

* @param mechanisms the non-null list of mechanism names to try.

* Each is the IANA-registered name of a SASL mechanism (e.g.,

* "GSSAPI", "CRAM-MD5").

* @param authorizationId the possibly null authorization ID to

* use. When the SASL authentication completes successfully, the

* entity named by authorizationId is granted access.

* @param protocol the non-null string name of the protocol for

* which the authentication is being performed (e.g., "ldap")

* @param serverName the non-null string name of the server to

* which we are creating an authenticated connection.

* @param props The possibly null properties to be used by the SASL

194 Securing the Data

* mechanisms to configure the authentication exchange. For example,

* "javax.security.sasl.encryption.maximum" might be used to

* specify the maximum key length to use for encryption.

* @param cbh the possibly null callback handler to be used by the

* SASL mechanisms to get further information from the

* application/library to complete the authentication. For example,

* a SASL mechanism might require the authentication ID and

* password from the caller.

* @return a possibly null <tt>SaslClient</tt> created using the

* parameters supplied. If null, this factory cannot produce a

* <tt>SaslClient</tt> using the parameters supplied.

* @exception SaslException if it cannot create a

* <tt>SaslClient</tt> because of an error.

*/

public SaslClient createSaslClient(

String[] mechanisms,

String authorizationId,

String protocol,

String serverName,

Hashtable props,

CallbackHandler cbh) throws SaslException {

String mechClass = null;

// Check each of the mechanisms to see if any of them match

// a mechanism we can produce

for(int i = 0; (mechClass == null) &&

(i < mechanisms.length); i++) {

if (MECHANISM_NAME.equals(mechanisms[i])) {

mechClass = MECHANISM_CLASS;

}

}

if (mechClass != null) {

// Found a mechanism, so attempt to instantiate an

// appropriate SaslClient object

try {

Class c = Class.forName(mechClass);

return (SaslClient)c.newInstance();

} catch (Exception e) {

System.err.println(

"SaslClientFactory.createSaslClient: " + e);

throw new SaslException(mechClass, e);

}

}

return null;

}

Using SASL Authentication 195

/**

* Returns an array of names of mechanisms supported by this

* factory.

* @return a non-null array containing IANA-registered SASL

* mechanism names

*/

public String[] getMechanismNames() {

return new String[] { MECHANISM_NAME };

}

private final static String MECHANISM_NAME = "ANONYMOUS";

private final static String MECHANISM_CLASS =

"mypackage.sasl.mechanisms.Anonymous";

}

After you have defined and compiled the SASL client class and a factory that
can produce it, you can use the LDAPConnection.authenticate methods to
authenticate to the server, as described earlier. Specify your factory either with
Sasl.setClientFactory or by setting the “javax.security.sasl.client.pkgs” property
in the props argument to authenticate.

Conclusion

In this chapter we have discussed the ways in which directory data and client sessions
can be protected. Directory data is subject to access control. There is no standard yet
for defining and publishing the access control of an LDAP server, but we have looked
closely at how it is published and configured in Netscape Directory Server.

Three authentication types are published in Internet standards-track documents:
simple password authentication, TLS (SSL), and SASL. All LDAP servers support sim-
ple password authentication, but not many support the proposed standard for TLS
(although many support SSL over a dedicated connection). SASL is more widely sup-
ported in principle, but not many mechanisms are available yet for most servers or
clients.

SSL is the only widely used protocol for session privacy. SASL offers a means for
negotiating a security layer, but mechanisms to support a security layer are not yet
available for most servers or clients.

196 Securing the Data

P A R T I I I

GETTING DOWN
AND DIRTY

C H A P T E R 8 More Power to
the Browser: An
Applet That
Speaks LDAP

C H A P T E R 9 Scripting LDAP:
JavaScript and
Java

C H A P T E R 1 0 Don’t Redo It,
Reuse It: LDAP
JavaBeans

C H A P T E R 1 1 Make Your
Application
Location-
Independent

C H A P T E R 1 2 Modeling
Relationships

C H A P T E R 1 3 Servlets and LDAP

One of the advantages of using Java is that you can write an LDAP client that runs
as an applet within a browser. Because LDAP clients need to communicate with

an LDAP server (which is typically running on a machine other than the one that hosts
the Web server), your applet will need to request privileges to connect to the LDAP
server. If you sign your applet digitally, the user can determine who created the applet
and can make an intelligent decision about whether or not to allow your applet to
connect to the LDAP server. In this chapter we will explain the differences between
writing an LDAP client as an applet and writing it as a stand-alone application.

Note that although this chapter contains some information on setting up certificates
and on signing an applet, it is not intended as a comprehensive guide to applet security.
For more information on applet security, visit the Netscape (http://developer.
netscape.com/tech/security/), Microsoft (http://www.microsoft.com/security/),
and Sun Microsystems (http://java.sun.com/security/) Web sites on security.

What’s So Different about an Applet?

Java applets run within browsers and have additional restrictions that do not apply to
stand-alone Java applications. Typically, browsers restrict the capabilities of an applet to
prevent potential security problems (for example, to prevent a rogue applet from dam-
aging files on the system or from making unwarranted connections to sites on the Inter-
net and passing information to those sites). These restrictions or boundaries are typically
referred to as the sandbox (as in “applets can work only within the sandbox”).

One of the main restrictions of the sandbox is that an applet cannot make net-
work connections to other systems. This limitation presents a problem for developers
who want to create applets that are LDAP clients. The applet typically must be capable

More Power
to the Browser:
An Applet That
Speaks LDAP

199

C H A P T E R 8

of connecting to an LDAP server on a machine other than the Web server that hosts the
applet; however, browsers restrict applets from making network connections.

Fortunately, both Netscape Navigator and Microsoft Internet Explorer have
trust-based security models that allow “trusted” applets to work outside the sandbox.
Trusted applets need to be signed to identify the creator of the applet. To sign an
applet, you need a digital certificate that identifies you as a software publisher—an
object-signing certificate.

Certificates and Signed Applets

The purpose of signing an applet is to allow the browser to identify the author of the
applet and determine if the applet has been tampered with since it was signed.

To understand how digital signatures work, you need to understand public-key
cryptography. In public-key cryptography, a unique pair of keys is used to encrypt and
decrypt data. The keys are related mathematically; the data encrypted by one of the
keys in the pair can be decrypted only by the other key.

Each individual, or entity (for example, a software publisher), has a unique pair
of keys. The entity makes one of the keys available to the public and keeps the other
key private. The public key allows anyone to encrypt data to send to the entity. Since
the corresponding private key is the only key that can decrypt this data, the sender can
be confident that the data can be decrypted only by the entity (who has exclusive
access to the private key).

Similarly, the entity is the only one who can encrypt data with the private key. If
a recipient gets encrypted data from the entity, the recipient can use the public key to
decrypt the data in order to verify that the data came from the entity. If the public key
decrypts the data successfully, the data must have been encrypted by the private key.
Since the private key can be used only by the entity, the entity must have sent the data.
In this situation the key pair authenticates that data was sent from the entity. Figure
8-1 illustrates how the public-private key pair is used to verify the authenticity of the
sender.

Digital certificates provide the means to verify that an entity owns a given pair of
keys. These certificates are issued by a certificate authority (CA). The entity sends a
public key to the CA and requests a certificate for the key. The CA is responsible for
verifying that the entity is the owner of the key pair. If the CA can attest to the owner-
ship, the CA issues a certificate to the entity.

The certificate contains the name of the entity and a bit-string representation of
the public key of the entity. It certifies that the entity with this name is the owner of
this key. The certificate also contains the name of the CA who issued the certificate,
the time period within which the certificate is valid, the serial number of the certifi-
cate, and some additional information. The CA signs all this data with a private key

200 More Power to the Browser: An Applet That Speaks LDAP

and includes the data, the algorithm used to sign the data, and the digital signature in
the certificate. Upon receiving a certificate, a recipient can use this digital signature to
verify that the certificate was issued by the CA.

The following general description is a simple overview of the signing process and
does not describe in detail how the Netscape, Microsoft, and Sun signing tools work.
These details are covered later in this chapter in the relevant sections on those signing
tools.

A digital signature is generated from the private key and the data to be signed
(your Java classes). First, a hash function is applied to the data (typically referred to as
the message). From the message, the hash function generates a unique, fixed-length
string, which is called the message digest. The hash function should be a one-way func-
tion; that is, it should be computationally infeasible to recover the message from the
message digest. Examples of hash functions include MD5 and SHA1. The private key is
used to encrypt the message digest. The encrypted message digest is the digital signature.

The signing tool also includes the certificate (which contains the public key) with
the signed code. At this point the signed code can be posted on a Web server for down-
load, as illustrated in Figure 8-2.

When downloading the signed file, the browser uses the public key (found in the
certificate included with the signed code) to check the digital signature. The browser
decrypts the encrypted message digest (the digital signature) and then generates its
own message digest from the files (using the same hash function). Then the browser

Certificates and Signed Applets 201

Digital
signature

Original
data

Private key

Encryption

Public key

Decryption

Hashing
algorithm

Original
data

Hashing
algorithm

One-way
hash

Signing Sending Receiving

One-way
hash

One-way
hash

Digital
signature

Digital
signature

Original
data

Compare

If hashes are identical,
original data has not
changed since it was
signed.

FIGURE 8-1. Encryption with public-key cryptography.

compares the two message digests. If the message digests are the same, the encrypted
message digest was decrypted successfully using the public key. The message digest
must have been signed by the private key associated with the public key that was
included with the code. The comparison of the message digests also verifies that the
files have not been modified since they were signed (since the message digests were
generated from the files).

Now that the browser has verified that the files were signed by the private key
corresponding to this public key, the browser can examine the certificate for the pub-
lic key. The browser attempts to determine if it trusts the CA who issued the certifi-
cate. The browser typically has a database of CA certificates, which are marked as
trusted or untrusted. If necessary, the browser presents this identification to the user
so that the user can determine whether or not to trust the applet. Some browsers may

202 More Power to the Browser: An Applet That Speaks LDAP

MyCo’s private key

Signing
tool

JAR file

MyCoFile.class

MyCo’s digital signature
for MyCoFile.class

MyCo’s certificate

MyCo’s public key

Certificate authority’s
digital signature

MyCo’s certificate

MyCo’s public key

Certificate authority’s
digital signature

“Letter of
introduction”

Web site

FIGURE 8-2. Creating a signed JAR file.

simply ask the user if the certificate issuer can be trusted; others may have a more fine-
grained model and ask the user if the applet signed by the certificate issuer can be
trusted to execute a particular privileged operation—for example, to establish a net-
work connection. Figure 8-3 provides an illustration of how the browser determines
the authenticity of the signer of a JAR file.

In summary, if you want to write an applet that is an LDAP client, your applet
will need to get permissions to work outside the sandbox to connect to the LDAP
server. You need to generate a public-private key pair and a digital certificate that certi-
fies that key pair. The certificate must identify you as a software publisher. You need to
use the private key to sign your applet, which identifies you as the creator of the applet.

If your company has its own certificate server, you can get the digital certificate
from your company’s certificate authority. Typically, this certificate is valid only
within the company. Otherwise you can get a digital certificate from an independent
certificate authority, such as VeriSign.

Certificates and Signed Applets 203

JAR file

MyCoFile.class

MyCo’s digital signature
for MyCoFile.class

MyCo’s certificate

MyCo’s public key

CA’s digital signature

CA’s certificate

CA’s public key

CA’s digital signature

The browser uses
CA’s public key to
validate CA’s “letter
of introduction”

The browser informs user
that applet is signed by MyCo

Web site

User downloads
JAR file

Certificate for trusted
CA is preinstalled
in the browser

The browser
uses MyCo’s
public key to
validate MyCo’s
digital signature

Certificate
authority

(CA)
1

2

3

4

FIGURE 8-3. How a browser validates a signed JAR file.

The rest of this chapter describes the details of writing and signing applets for
the different browsers.

Writing LDAP Applets for Netscape Navigator

To use your applet with Netscape Navigator, you need to create a JAR file that con-
tains the class files for your applet and the digital signatures for each class file. You
create the digital signatures by using an object-signing certificate.

When the browser downloads the JAR file (during the loading of the applet),
Netscape Navigator checks the digital signatures for the class files in the JAR file to verify
that the classes have not been modified since they were signed. The browser also gets the
public key of the certificate authority (who signed your certificate) from its local database
of certificates, and it validates the authority’s signature on your digital certificate.

If the applet requests special privileges to run outside the sandbox, the browser
presents your identification to the user. The browser also reports any problems that
occurred during this process (for example, if the browser failed to validate the digital
signatures). At this point the user can choose to let the applet run.

The rest of this section explains how to set up your applet for use in Netscape
Navigator.

Requesting Connection Privileges

Netscape Navigator uses a capabilities model to determine which applets have which
privileges. This model consists of principals, targets, and privileges:

• The principal is the entity requesting the privileges. In the case of your
applet, the principal is the digital certificate that you used to sign the files.

• The target is the permissions being requested. In this case, the target is the
capability to establish a network connection to another system.

• Privileges are associated with each principal. These privileges determine
whether or not the principal is allowed access to a particular target. In this
case, a privilege indicates whether or not your applet (code signed by your
digital certificate) is allowed to establish a network connection to another
machine.

The Privilege Manager in Navigator keeps track of the privileges for each princi-
pal. If a principal requests a privilege that has not been granted, the browser prompts
the user with a message indicating that the applet is requesting additional privileges.
The user can choose to grant or deny that request.

204 More Power to the Browser: An Applet That Speaks LDAP

To request the privilege to connect over the network, invoke the static
enablePrivilege method of the netscape.security.PrivilegeManager class, pass-
ing in the target "UniversalConnect":

netscape.security.PrivilegeManager.enablePrivilege("UniversalConnect");

The first time you request the privilege (that is, if the privilege has not been
granted before), the browser prompts the user with a message indicating that
your applet is requesting this privilege (see Figure 8-4). The user can click the Cer-
tificate button to see the details about the object-signing certificate that was used
to sign the applet (see Figure 8-5). If the user clicks the Grant button in the Secur-
ity dialog box to grant the privilege, the Privilege Manager notes that the privilege
has been granted. The next time you invoke enablePrivilege for the same target,
the Privilege Manager will not prompt the user, since that particular privilege has
already been granted. If the user refuses to grant the request, the browser throws a
ForbiddenTargetException.

Writing LDAP Applets for Netscape Navigator 205

FIGURE 8-4. Java Security dialog box in Navigator.

The following section of code illustrates how to enable the privilege to connect
over the network.

...

try {

netscape.security.PrivilegeManager.enablePrivilege(

"UniversalConnect");

...

} catch (netscape.security.ForbiddenTargetException e) {

/* The user refused to grant the privilege. */

} catch (Exception e) {

/* A different error occurred. */

}

You can invoke the enablePrivilege method right before you need to connect
to the LDAP server, or you can invoke the method when the applet loads (within the
init method). The place in your code where you enable the privilege determines when
the user is prompted to grant privileges. In the former case, the user will be prompted

206 More Power to the Browser: An Applet That Speaks LDAP

FIGURE 8-5. Certificate dialog box in Navigator.

to grant privileges when your applet needs to connect to the LDAP server. In the latter
case, the user will be prompted to grant privileges when the applet loads.

The netscape.security.PrivilegeManager class is in the java40.jar file that
comes with Netscape Navigator. To compile code that references the class, you will
need to add the JAR file to your CLASSPATH. In Windows NT, for example, use the fol-
lowing command:

set CLASSPATH=%CLASSPATH%;"c:\Program

Files\Netscape\Communicator\Program\Java\Classes\java40.jar"

You can also have your code invoke enablePrivilege dynamically (using reflec-
tion) to avoid including java40.jar in your CLASSPATH:

java.lang.reflect.Method getEnabler()

throws ClassNotFoundException {

SecurityManager sec = System.getSecurityManager();

if ((sec == null) ||

sec.toString().startsWith(

"java.lang.NullSecurityManager")) {

/* Not an applet; we can do what we want to */

return null;

} else if (sec.toString().startsWith(

"netscape.security.AppletSecurity")) {

/* Running as applet. PrivilegeManager around? */

Class c = Class.forName(

"netscape.security.PrivilegeManager");

java.lang.reflect.Method[] m = c.getMethods();

for(int i = 0; i < m.length; i++) {

if (m[i].getName().equals("enablePrivilege")) {

return m[i];

}

}

}

return null;

}

...

...

// Time to request network connection privileges

try {

java.lang.reflect.Method m = getEnabler();

if (m != null) {

Object[] args = new Object[1];

Writing LDAP Applets for Netscape Navigator 207

args[0] = new String("UniversalConnect");

m.invoke(null, args);

} catch (Exception ie) {

System.err.println("Invoking enablePrivilege: " +

ie.toString());

}

Be careful where you invoke the enablePrivilege method. You should not
invoke this method within a public “helper” method (for example, a public method to
open network connections) that another applet could subvert.

If you want to restrict the amount of your code that allows network connections,
you can invoke the revertPrivilege method of the PrivilegeManager class after
you are done with the network connection. After you invoke this method, the privi-
lege is no longer enabled. Note, however, that the privilege is still granted by the user,
which means that you can invoke the enablePrivilege method again without
prompting the user again for permission.

The Privilege Manager inserts security information into the stack of the caller.
This means that the application retains any privileges only until it returns from the
method where they were acquired. If you create a method that just calls
netscape.security.PrivilegeManager.enablePrivilege and then returns, the priv-
ileges will have been relinquished by the time the caller of the method regains control:

void callEnable() {

netscape.security.PrivilegeManager.enablePrivilege(

"UniversalConnect");

}

void mainMethod() {

...

callEnable(); // Request privileges

try {

ldc.connect("myhost.airius.com", 389);

// The call will fail with a Navigator exception

// because the privileges were released on return from

// callEnable()

For more information on privileges and the capabilities model, see the following
references:

• “Introduction to the Capabilities Classes” (at http://developer.

netscape.com/docs/manuals/signedobj/capabilities/index.html)

• “Netscape System Targets” (at http://developer.netscape.com/docs/
manuals/signedobj/targets/index.htm)

208 More Power to the Browser: An Applet That Speaks LDAP

Packaging Your Applet

When you are ready to test your applet, you should sign your code with your digital
certificate and package your code with the digital signatures and certificates into a
JAR file. To sign your code, you need the following:

• An object-signing certificate and the corresponding private key (you can
request the certificate from your company’s certificate authority or from an
independent authority, such as VeriSign)

• The certificate of the certificate authority who issued your object-signing
certificate

• Netscape Signing Tool (download from http://developer.netscape.com/
software/signedobj/index.html?content=jarpack.html)

There is valuable information on using the SigningTool in “Signing Software with
the Netscape Signing Tool.” Before you sign your code, read the documentation at
http://developer.netscape.com/docs/manuals/signedobj/signtool/index.htm.

If you have not received your object-signing certificate but you want to test your
applet, you have the following options:

• You can use Netscape Signing Tool to generate a test public-private key
pair and a self-signed certificate for object signing.

• You can set up your copy of Netscape Navigator to allow the codebase of
the applet (the HTTP or file URL) to serve as the principal (rather than the
signing certificate). If you do this, you do not need to use Netscape Signing
Tool to sign your code. For more details, see the section “Using the Code-
base as a Principal” later in the chapter.

Generating a Test Certificate

To generate a test certificate, do the following:

1. Exit from Netscape Navigator if it is running.

2. Make a backup copy of the key3.db and cert7.db files, which are located
in your Netscape user’s directory (the Program Files\Netscape\Users\

<username> directory in Windows and the ~/.netscape directory in
UNIX).

3. Set up a password for the key and certificate databases, if you have not
already done so. When you run signtool, you will be prompted to enter

Writing LDAP Applets for Netscape Navigator 209

this password. To set up a password, choose the Communicator/Tools/
Security Info menu item, and click the Passwords link on the left. Follow
the directions in this dialog box to set your password.

4. Run the signtool command with the -G <name of certificate> and -d
<location of key and certificate databases> options. When prompted,
enter the appropriate information for your object-signing certificate.

The following is an example of running signtool. The information you need to
enter is highlighted in bold.

D:\>signtool -G TestCertificate -d "D:\Program

Files\Netscape\Users\myusername"

using certificate directory: D:\Program

Files\Netscape\Users\myusername

Enter certificate information. All fields are optional. Acceptable

characters are numbers, letters, spaces, and apostrophes.

certificate common name: Object Signing Certificate for Testing

organization: My Company

organization unit: My Division

state or province: California

country (must be exactly 2 characters): US

username: myusername

email address: myemail@mydomain.com

Enter Password or Pin for "Communicator Certificate DB": My Password

generated public/private key pair

certificate request generated

certificate has been signed

certificate "TestCertificate" added to database

Exported certificate to x509.raw and x509.cacert.

Running signtool generates a test certificate for object signing. This test certifi-
cate is self-signed. Although most certificates are signed by a separate certificate
authority, this test certificate serves as its own certificate authority and signs its own
certificate. If you start Netscape Navigator, choose Communicator/Tools/Security Info
and click the Signers link on the left. The new certificate should be listed as a certifi-
cate authority, as in Figure 8-6. A self-signed certificate cannot be used in a production
environment, because clients will not be able to verify the issuer.

Signing Your Code

Now that you have an object-signing certificate, you can use Netscape Signing Tool
(signtool) to sign your code and package everything in a JAR file.

210 More Power to the Browser: An Applet That Speaks LDAP

Use the following syntax for the signtool executable:

signtool -d <cert_dir> -k <cert_name> -Z <jar_file> <code_dir>

where

• <cert_dir> specifies the location of your certificate database and your key
database. For example, in Windows NT this is typically C:\Program Files\
Netscape\Users\<yourname>.

• <cert_name> specifies the object-signing certificate.

• <jar_file> specifies the JAR file you want to create.

• <code_dir> specifies the directory that contains the code files you want
to sign.

The following example demonstrates how to sign your code. The example uses
the “TestCertificate” certificate to sign the LDAPApplet.class file, which is located in

Writing LDAP Applets for Netscape Navigator 211

FIGURE 8-6. Listing a test certificate in Navigator.

the D:\sourcefiles\codefiles directory. The example also creates a JAR file named
LDAPApplet.jar. The example expects to find the certificate and key databases in the
D:\Program Files\Netscape\Users\myname directory. The information you need to
enter is highlighted in bold.

D:\sourcefiles>signtool -d "D:\Program Files\Netscape\Users\myname" -k

TestCertificate -Z LDAPApplet.jar codefiles

using key "TestCertificate"

using certificate directory: D:\Program Files\Netscape\Users\myname

Generating codefiles/META-INF/manifest.mf file..

—> LDAPApplet.class

adding codefiles/LDAPApplet.class to LDAPApplet.jar...(deflated 44%)

Generating zigbert.sf file..

Enter Password or Pin for "Communicator Certificate DB": MyPassword

adding codefiles/META-INF/manifest.mf to LDAPApplet.jar...(deflated 15%)

adding codefiles/META-INF/zigbert.sf to LDAPApplet.jar...(deflated 27%)

adding codefiles/META-INF/zigbert.rsa to LDAPApplet.jar...(deflated 45%)

tree "codefiles" signed successfully

In this example, signtool generates the following files in the directory META-INF:

• A manifest file (manifest.mf)

• A signature instruction file (zigbert.sf)

• A digital signature file (zigbert.rsa)

The manifest file contains a list of files to be signed. For each file, the manifest file
lists the file name and the message digests of the file (using MD5 and SHA1):

Manifest-Version: 1.0

Created-By: Signtool (signtool 1.0)

Comments: PLEASE DO NOT EDIT THIS FILE. YOU WILL BREAK IT.

Name: DirBrowser$1.class

Digest-Algorithms: MD5 SHA1

MD5-Digest: PYjS+BxHowayyFXC2zneEQ==

SHA1-Digest: 0NEKcktsn9HZelX/GF6dCHQ7quQ=

Name: DirBrowser$2.class

Digest-Algorithms: MD5 SHA1

MD5-Digest: O9bVKN4s1XZv61YXvUD6Tg==

SHA1-Digest: j7b3+ueHUvC6huTVr9JelRELDU8=

Name: DirBrowser.class

Digest-Algorithms: MD5 SHA1

212 More Power to the Browser: An Applet That Speaks LDAP

MD5-Digest: 8XhQaKaVIRIzu83x/WNQcg==

SHA1-Digest: as5dt4GoADFRSm4SS5EFcCFBwgc=

The signature instruction file contains message digests of the entries in the mani-
fest file. For each section that specifies the name and message digest of a file, the signa-
ture instruction file contains a message digest of that section:

Signature-Version: 1.0

Created-By: Signtool (signtool 1.0)

Comments: PLEASE DO NOT EDIT THIS FILE. YOU WILL BREAK IT.

Digest-Algorithms: MD5 SHA1

MD5-Digest: AS2/p3IMG4G4R8ngJZMXYg==

SHA1-Digest: K+5iG58pGOawiYucrif0fQDkU8g=

Name: DirBrowser$1.class

Digest-Algorithms: MD5 SHA1

MD5-Digest: AoZ/ajkQpon7YtmS8vj9ww==

SHA1-Digest: hH0UCdwgWKA6a/3MBPEpz8+8nus=

Name: DirBrowser$2.class

Digest-Algorithms: MD5 SHA1

MD5-Digest: CJW1d+60OUI/yFg8setPzw==

SHA1-Digest: hsIH+/+cUtnqO5VvrqJ7GAtk6k4=

Name: DirBrowser.class

Digest-Algorithms: MD5 SHA1

MD5-Digest: MY9zMx2XR+5y7KhyJTsquQ==

SHA1-Digest: ff03BtltOU2rdQ/rUL4VNA89DQk=

The message digest of the signature instruction file is signed and placed in
the digital signature file. The digital signature file also contains the certificate for the
key pair used to sign the files. The utility signtool puts all the files into the JAR file
(LDAPApplet.jar in this example).

To verify that your files have been signed correctly, use the following syntax for
the signtool executable:

signtool -d <cert_dir> -v <jar_file>

where

• <cert_dir> specifies the location of your certificate database and your key
database. For example, in Windows NT this is typically C:\Program Files\
Netscape\Users\<yourname>).

• <jar_file> specifies the JAR file you have just created.

Writing LDAP Applets for Netscape Navigator 213

The following example demonstrates how to verify that your code has been
signed correctly. The example expects to find the certificate and key databases in the
D:\Program Files\Netscape\Users\myname directory. The information you need to
enter is highlighted in bold.

D:\sourcefiles>signtool -d "D:\Program Files\Netscape\Users\myname" -v

LDAPApplet.jar

using certificate directory: D:\Program Files\Netscape\Users\myname

archive "LDAPApplet.jar" has passed crypto verification.

status path

—————— ——————————

verified LDAPApplet.class

For more information on the JAR format as used by Netscape, see the Netscape
documentation at http://developer.netscape.com/docs/manuals/signedobj/

jarfile/index.html. For more information on using Netscape Signing Tool, see the
manual Signing Software with Netscape Signing Tool 1.1 at

http://developer.netscape.com/docs/manuals/signedobj/signtool/index.htm.

Testing Your Applet

Next you need to import the CA certificate into the browser that you will use to test
the applet (if you are testing the applet from a different system). To import the CA cer-
tificate into other browsers, you need to set up a Web page to serve the certificate, and
you need to configure your Web server to send the certificate with a specified MIME
type. Follow these steps:

1. Create a Web page that contains a link pointing to the file x509.cacert. This
file was exported when you generated your test certificate. For example,

Import the Test Certificate

2. Place the Web page and the x509.cacert file in a document directory
under your Web server.

3. Configure your Web server to use the MIME type application/x-x509-

ca-cert when serving files with the extension .cacert.

4. Load the Web page in the browser, and click the link to import the cer-
tificate.

214 More Power to the Browser: An Applet That Speaks LDAP

5. Netscape Navigator presents a wizard for importing a CA certificate. Be
sure to indicate that you trust this CA for issuing object-signing certificates.

Now create a Web page for your applet, and load the Web page in your browser.

Using the Codebase as a Principal

If you do not want to generate a test certificate, you can still test your applet by con-
figuring Netscape Navigator to use as a principal the codebase (that is, the file URL or
HTTP URL) rather than a signed certificate. Note that this configuration is intended
for development use only. Your users should not configure the browser in this way.

You also need to be cautious when downloading applets from the Internet.
When an unknown applet attempts to enable a privilege, the browser prompts you to
grant or deny the privilege. Be wary of any codebase principal that appears here, since
you cannot verify the identity of the applet creator or the integrity of the applet.

To set up the browser to use codebase principals, exit Netscape Navigator and
open the file prefs.js in a text editor. Like the key and certificate database files, the
prefs.js file is located in the Netscape user’s directory. Add the following line:

user_pref("signed.applets.codebase_principal_support", true);

Writing LDAP Applets for Microsoft Internet Explorer

To use your applet with Microsoft Internet Explorer, you need to create a CAB (cabinet)
file that contains the class files for your applet, your digital certificate, and the digital sig-
natures for the CAB file. The certificate must be a software publishing certificate (SPC).

When a user downloads the CAB file (when loading someone else’s applet),
Internet Explorer checks the digital signatures for the class files in the CAB file to ver-
ify that the classes have not been modified since they were signed. The browser also
checks the signature for permission information and compares the requested permis-
sions against the security zones (which are defined in the next section) set up by the
user. If the requested permissions exceed the permissions allowed for the current zone,
the browser prompts the user to allow or deny the permissions. The browser also dis-
plays information from the certificate to the user.

To develop an applet and sign the CAB file, you need Microsoft SDK for
Java. You can download this SDK from the Microsoft Web site

(http://www.microsoft.com/java/sdk/32/default.htm).

The rest of this section explains how to set up your applet for use in Internet
Explorer.

Writing LDAP Applets for Microsoft Internet Explorer 215

Requesting Connection Privileges

Internet Explorer uses a model that combines permission requests with security zones
to determine which applets have which permissions.

Zones allow users to set up security policies for different groups of sites. Internet
Explorer groups Web sites into four zones:

1. Local intranet. These are sites in the network of the user’s company.

2. Trusted sites. These are sites the user trusts, and they require only a low
level of security when downloading and running files.

3. Internet.

4. Restricted sites. These are sites the user does not trust, and they require a
medium or high level of security.

The user can assign one of the following security levels to each zone:

• High security. This security level allows Java applets to run within the
sandbox without prompting the user for permission.

• Medium security. This security level allows Java applets to run within the
sandbox and to use up to 1MB of scratch space on the local system.

• Low security. This security level allows Java applets to run outside of the
sandbox as fully trusted applets.

• Custom security. This option allows the system administrator or the user to
set up a custom security level.

The security zones and levels are described in more detail in the documentation
for Microsoft SDK for Java and in the online help for Internet Explorer.

CAB files containing Java classes can also be signed with security levels. For
example, if a Java applet needs to use scratch space on the local machine, the CAB file
for the applet can be signed with the medium security level. This designation indicates
that the applet will be requesting permissions to operate under the medium security
level or lower.

If a CAB file from a given zone requests a permission higher than the permissions
allowed for that zone, the user is prompted to grant or deny the permission. For
example, suppose a user assigns the high security level to the Internet zone. If the user
downloads a CAB file from the Internet that is signed with the medium security level,
the browser will prompt the user to grant or deny the permissions to run at the
medium security level.

216 More Power to the Browser: An Applet That Speaks LDAP

If you expect your applet to be used by Internet Explorer 4.01 and more recent
browsers, you can sign the CAB file with specific permissions to access computers on
the network (rather than as a fully trusted applet with the low security level). For
more details, see the section “Signing Your Code” later in this discussion of applets in
Internet Explorer.

Even though the user grants permissions before downloading and running your
applet, you still need to ask for (“assert,” in Internet Explorer parlance) permission to
connect to the network. When running the applet, the Microsoft Virtual Machine
crawls the call stack to verify that all callers are trusted to perform the operation. Dur-
ing this verification process, the Security Manager throws a SecurityException
[Host] if your code did not assert permission to connect to the network before
attempting to connect.

To assert permission to connect to other machines over the network, invoke the
following method:

import com.ms.security.*;

...

PolicyEngine.assertPermission(PermissionID.NETIO);

This method prevents the Security Manager from crawling the call stack. Note
that before you decide to assert permissions, you should make sure any untrusted
members of the call stack cannot use the permissions to damage or cause potential
problems with the user’s machine. Typically this means that you will call the method
at the lowest method level at which permissions are needed in your application. After
you are done interacting with the LDAP server over the network, you can invoke the
revertPermission method to negate the effect of the permission.

For more information on permissions and the policy engine, see the documenta-
tion for Microsoft SDK for Java.

Packaging Your Applet

When you are ready to test your applet, you should package your code in a CAB file
and sign your code with your digital certificate. You can use the cabarc utility (pro-
vided with Microsoft SDK for Java) to create the CAB file. To sign the CAB file, you
need the following:

• A software publishing certificate (SPC) and the corresponding private key
(you can request the certificate from your company’s certificate authority
or from an independent authority, such as VeriSign)

• The certificate of the certificate authority who issued your SPC

• The signcode utility, which is included with Microsoft SDK for Java

Writing LDAP Applets for Microsoft Internet Explorer 217

If you have not received your SPC but you want to test your applet, you can use
the makecert and cert2spc utilities (provided with Microsoft SDK for Java) to gener-
ate a test SPC.

Generating a Test Certificate

To generate a test certificate, do the following:

1. Run the makecert utility to generate the public-private key pair and the
certificate:

makecert -sk <key_name> -n <subject_dn> <cert_file>.cer

where

• <key_name> specifies the container for your public-private key pair. The
makecert utility generates this name automatically if it does not exist.

• <subject_dn> specifies your DN as a software publisher—for example,
cn=My Software Publisher Name.

• <cert_file> specifies the file that will contain the generated certificate.

2. Run the cert2spc utility to convert the generated certificate to an SPC:

cert2spc <cert_file>.cer <spc_file>.spc

where

• <cert_file> specifies the file that contains the generated test certificate.

• <spc_file> specifies the file that will contain the generated SPC.

Signing Your Code

Now that you have an SPC, you can set up the permissions for your applet and sign
the CAB file.

Rather than setting up your applet to request a low security level, you can define
a custom set of permissions that includes only the permission to connect to the net-
work (and not any of the other permissions allowed by a low security level). The
signcode utility allows you to define a set of custom permissions in an .ini file. To
create and modify this .ini file, you can use the piniedit utility, which is included
with Microsoft SDK for Java. Use the following syntax:

piniedit <ini_file>

218 More Power to the Browser: An Applet That Speaks LDAP

The piniedit utility displays a warning message if the .ini file does not exist.
You can click OK to dismiss this message, and the utility will display the main window.

In the main window (see Figure 8-7), click the Network tab and choose the Con-
nect access type. Use the Include Host text box and the Ports text box to specify the
name and port of your LDAP server, respectively, and click Add to add your server to
the list. Save your changes and exit the utility.

The piniedit utility generates an .ini file that defines the permissions to con-
nect to your LDAP server. You can use that .ini file with the signcode utility to sign
the CAB file:

signcode -j javasign.dll -jp <ini_file> -spc <spc_file>.spc -k

<key_name> <cab_file>

where

• <ini_file> specifies the .ini file that contains your custom permissions.

• <spc_file> specifies the file that contains the generated SPC.

Writing LDAP Applets for Microsoft Internet Explorer 219

FIGURE 8-7. Permission INI File Editor for Internet Explorer.

• <key_name> specifies the container for your public-private key pair in the
registry.

• <cab_file> specifies the CAB file that contains the code files you want to
sign.

The following example demonstrates how to generate a test certificate and sign
your CAB file. The example does the following:

• Generates a public-private key pair in the container named MyKeys (in the
registry)

• Generates a certificate file named TestCertificate.cer

• Converts this generated certificate to an SPC in the file named TestSPC.spc

• Uses the piniedit utility to create a permissions.ini file that defines cus-
tom permissions and uses that file (along with the generated SPC) to sign
the CAB file named LDAPApplet.cab

The example assumes that your DN (as a software publisher) is cn=My Software
Publisher Name. The information you need to enter is highlighted in bold.

D:\sourcefiles>makecert -sk MyKeys -n "CN=My Software Publisher Name"

TestCertificate.cer

Succeeded

D:\sourcefiles>cert2spc TestCertificate.cer TestSPC.spc

Succeeded

D:\sourcefiles>signcode -j javasign.dll -jp permissions.ini -spc

TestSPC.spc -k MyKeys LDAPApplet.cab

Warning: This file is signed, but not timestamped.

Succeeded

To verify that your CAB file has been signed correctly, use the chkjava utility:

chkjava <cab_file>

The utility verifies the signature on the CAB file and displays information on the
certificate used to sign the file. It also displays information on the security level or per-
missions requested.

For more information on signing CAB files and on Java security, see the docu-
mentation for Microsoft SDK for Java. Note that the Java LDAP classes are not
included with Internet Explorer, so to use them in an applet you will need to package
them and provide them in a CAB file.

220 More Power to the Browser: An Applet That Speaks LDAP

Creating a Web Page for the Applet

The fact that Netscape Navigator ignores the CABBASE applet parameter (used by
Internet Explorer to locate the CAB file of an applet) and Microsoft Internet Explorer
ignores the ARCHIVE tag (used by Navigator to identify the JAR file of an applet) is for-
tunate because it means you can have a single Web page that makes both a signed
CAB file and a signed JAR file available for users of both browsers:

<APPLET CODE="snazzy.class"

CODEBASE="jars"

ARCHIVE="snazzy.jar"

WIDTH=100 HEIGHT=100>

<PARAM NAME="cabbase" VALUE="snazzy.cab">

</APPLET>

If the CAB or JAR file is not already present on the user’s system when the Web
page is loaded, the browser downloads the appropriate file and starts the applet.

Writing LDAP Applets for Java Plug-In Software

If you are writing an applet that uses Java Foundation Classes (JFC), your browser
needs to be able to run JFC applets. If the browser is not configured to run JFC applets
out of the box, you can choose one of the following options:

• If you have a recent version of a browser (Internet Explorer 4.01 or later, or
Netscape Communicator 4.5 or later), you can configure the browser or
the Java virtual machine to include the JFC classes in the CLASSPATH envi-
ronment variable. See the instructions on the java.sun.com Web site at
http://java.sun.com/products/jfc/tsc/web/applets/applets.html

for more information.

• You can use Sun’s Java Plug-in Software to run the applet in Netscape Navi-
gator or in Internet Explorer. See the instructions on the java.sun.com Web
site at http://java.sun.com/products/plugin/ for more information.

Java Plug-in Software (starting from version 1.2) supports applets signed using
the Java 2 security tools. If a signed applet is trusted, that applet is allowed full per-
mission, which includes permissions to connect to other systems on the network.

Note that in Java Plug-in Software 1.2.2, Sun introduced support for applets
signed with RSA keys. This means you can use Netscape’s signtool utility to sign
applets for Java Plug-in Software. If you use this method for signing your applet, you

Writing LDAP Applets for Java Plug-In Software 221

do not need to install the certificate manually on each user’s machine. If you use the
Java 2 security tools to sign the applet, you will need to install the certificate manually
on each machine. For details on using signtool, see the previous section on writing
applets for Netscape Navigator.

The section that follows explains how to use the Java 2 security tools to sign an
LDAP applet.

Packaging Your Applet

When you are ready to test your applet, you should sign your code with your digital
certificate and package your code with the digital signatures into a JAR file. To sign
your code, you need the following:

• A certificate and the corresponding private key (you can request the certifi-
cate from your company’s certificate authority or from an independent
authority, such as VeriSign)

• The certificate of the certificate authority who issued your certificate

• The Java 2 security tools (which are included with Java 2)

You can generate a public-private key pair and issue a request for a certificate by
using the keytool utility, which is provided with Java 2. The keytool utility puts the
keys and certificate in a database called a keystore. Each entry in the keystore (an
entry contains the key and certificate) is assigned a unique alias. You access the entry
for the key and certificate by specifying the alias for the entry.

Before you sign your code, read the documentation on security in Java 2, which
is available at

http://java.sun.com/products/jdk/1.2/docs/guide/security/index.html.

If you have not received your certificate but you want to test your applet, you can use
the JDK security tools to generate a test public-private key pair and a self-signed cer-
tificate.

Generating a Key Pair and Self-signed Certificate

When you use the keytool utility to generate a public-private key pair, the utility
automatically wraps the generated public key in a self-signed certificate. To generate a
key pair and self-signed certificate, use the following syntax:

keytool -genkey -alias <key_alias> -dname <your_publisher_dn>

Use the -alias option to specify an alias for the generated key pair and self-
signed certificate. You will use this alias to access the keys and certificate from the key-

222 More Power to the Browser: An Applet That Speaks LDAP

store to sign your code. Use the -dname option to specify your DN as a software
publisher.

After you enter this command, you will be prompted for a password for the new
private key and a password for the keystore. After the command completes, verify
that the new certificate is in your keystore. Run the following command:

keytool -list

This command prints out information about the keys and certificates in your
keystore:

D:\>keytool -list

Enter keystore password:Password

Keystore type: jks

Keystore provider: SUN

Your keystore contains 1 entry:

testcert, Sat Jun 19 19:02:52 PDT 1999, keyEntry,

Certificate fingerprint (MD5):

4C:4F:40:86:9A:7B:8C:70:DB:24:C2:01:CC:C5:51:6F

Signing Your Code

Now that you have a certificate, you can package your classes in a JAR file and then
use the jarsigner tool to sign your code. Use the following syntax:

jarsigner -signedjar <signed_jar_file> <jar_file> <cert_alias>

where

• <signed_jar_file> specifies the signed JAR file that this tool will create.

• <jar_file> specifies the existing JAR file you want to sign.

• <cert_alias> specifies the alias of your certificate.

The jarsigner tool generates the following files in the directory META-INF:

• A manifest file (manifest.mf)

• A signature instruction file (<certifcate_name>.sf)

• A digital signature file (<certificate_name>.dsa)

Writing LDAP Applets for Java Plug-In Software 223

The manifest file contains a list of files to be signed. For each file, the manifest file
lists the file name and the message digest of the file (generated using SHA1):

Manifest-Version: 1.0

Created-By: 1.2.1 (Sun Microsystems Inc.)

Name: DirBrowser$1.class

SHA1-Digest: 5UiaGsXc0LLlt/IEotcH+9bHfRA=

Name: DirBrowserBeanInfo.class

SHA1-Digest: kn0rZcyhzcCDRfZtlxQw0LcKoWo=

Name: DirBrowser$2.class

SHA1-Digest: gXHmfkFrucvmIL/53ejCV1LjU3w=

Name: DirBrowser.class

SHA1-Digest: JK4rqsxJFDRNWizMGibfTiTVjqg=

The signature instruction file contains message digests of the entries in the mani-
fest file. For each section that specifies the name and message digest of a file, the signa-
ture instruction file contains a message digest of that section:

Signature-Version: 1.0

SHA1-Digest-Manifest: QOxxxZ9giDJs3QjiXiXSFWz92Eg=

Created-By: 1.2.1 (Sun Microsystems Inc.)

Name: DirBrowser$1.class

SHA1-Digest: L/zgZtORHeFNrmAaWqsqgkdOmA4=

Name: DirBrowserBeanInfo.class

SHA1-Digest: Mag4zERGXJPG6H3TKxRBA8h9UU4=

Name: DirBrowser$2.class

SHA1-Digest: JCVDgrSr/ypDdfaSOy0XX6di4rg=

Name: DirBrowser.class

SHA1-Digest: PgWvUCWWOmGpDz0C1JoF+YeVjso=

The message digest of the signature instruction file is signed and placed in the
digital signature file. The digital signature file also contains the certificate for the key
pair used to sign the files.

224 More Power to the Browser: An Applet That Speaks LDAP

To verify that your files have been signed correctly, use the following syntax for
the jarsigner tool:

jarsigner -verify -verbose <signed_jar_file>

For example,

D:\sourcefiles>jarsigner -verify -verbose sDirBrowser.jar

433 Tue Jul 06 08:43:22 PDT 1999 META-INF/TESTCERT.SF

950 Tue Jul 06 08:43:22 PDT 1999 META-INF/TESTCERT.DSA

0 Tue Jul 06 08:38:58 PDT 1999 META-INF/

smk 901 Tue Jul 06 08:38:30 PDT 1999 DirBrowser$1.class

smk 1094 Tue Jul 06 08:38:30 PDT 1999 DirBrowser$2.class

smk 5473 Tue Jul 06 08:38:30 PDT 1999 DirBrowser.class

smk 235 Tue Jul 06 08:38:30 PDT 1999 DirBrowserBeanInfo.class

s = signature was verified

m = entry is listed in manifest

k = at least one certificate was found in keystore

i = at least one certificate was found in identity scope

jar verified.

Setting Up the End User’s System

Next you need to verify that your code can be executed on an end user’s system. You
need to set up a keystore on the end user’s system, and you need to import your certifi-
cate into the keystore as a trusted certificate.

To make your public certificate available in a file, use the keytool utility with the
following syntax:

keytool -export -alias <key_alias> -file <output_filename>.cer

Use the -alias option to specify the alias for your self-signed certificate. Use the
-file option to specify the name of a file in which to store your certificate (for exam-
ple, softwarepub.cer). Copy the file that contains the certificate to the end user’s
machine.

On the end user’s machine, install Java Plug-In Software. You can download
a copy from http://java.sun.com/products/plugin/index.html. The plug-in
software is part of Java Runtime Environment (JRE). After you install the plug-in

Writing LDAP Applets for Java Plug-In Software 225

software, make sure that the bin directory of JRE is in the path, and use the keytool
utility to set up a keystore that contains your SPC. Use the following syntax:

keytool -import -alias <certificate_alias> -file <certificate_

file>.cer

When prompted, indicate that the certificate is trusted:

C:\>keytool -import -alias testcert -file e:\shared\testcert.cer

Enter keystore password: MyPassword

Owner: CN=My Software Publisher, OU="Information Technology o=Airius.com"

Issuer: CN=My Software Publisher, OU="Information Technology o=Airius.com"

Serial number: 376c4bc8

Valid from: Sat Jun 19 19:02:48 PDT 1999 until: Fri Sep 17 19:02:48 PDT

1999

Certificate fingerprints:

MD5: 4C:4F:40:86:9A:7B:8C:70:DB:24:C2:01:CC:C5:51:6F

SHA1: FA:43:A1:60:ED:35:2E:2C:66:7B:D7:D5:62:9E:09:FD:E7:24:1D:1F

Trust this certificate? [no]: y

Certificate was added to keystore

Next you need to set up a policy file to allow the signed applet to connect to the
LDAP server. From a command prompt, enter policytool to display the Policy Tool
dialog box (see Figure 8-8). Choose the Change KeyStore command from the Edit
menu.

In the New KeyStore URL text box of the Keystore dialog box (see Figure 8-9),
enter the file URL that points to the keystore you just created. By default, the keytool
command creates the keystore as the .keystore file in the user’s home directory (the
directory specified by the “user.home” system property). In Windows NT, for exam-
ple, the default keystore is the file C:\winnt\profiles\<username>\.keystore.
Click OK to use the specified keystore.

To create a new policy, click the Add Policy Entry button in the Policy Tool dia-
log box (see Figure 8-8). The Policy Entry window (Figure 8-10) will be displayed. In
the CodeBase text box, enter the URL to the codebase for your applet. In the SignedBy
text box, enter the alias for your certificate. Then click Add Permission to define the
permissions for connecting to the LDAP server. The Permissions dialog box (Figure
8-11) will be displayed.

In the Permissions combo box, choose SocketPermission. In the Target Name
text box, enter the host name of the LDAP server. In the Actions combo box, choose
connect. Click OK to add the permissions. Figure 8-12 shows what the Policy Entry
dialog box looks like after the socket permission has been added.

226 More Power to the Browser: An Applet That Speaks LDAP

Click Done to close any open windows. From the main Policy Tool window (see
Figure 8-8), choose Save As on the File menu, and save the policy file as a file named
.java.policy in the user’s home directory.

For more information on the Java 2 security tools, see the documentation at
http://java.sun.com/products/jdk/1.2/docs/guide/security/index.html.

Writing LDAP Applets for Java Plug-In Software 227

FIGURE 8-8. Policy Tool dialog box of Java Plug-In Software.

FIGURE 8-9. Keystore dialog box of Java Plug-In Software.

228 More Power to the Browser: An Applet That Speaks LDAP

FIGURE 8-10. Specifying the codebase and signer with Java Plug-In Software.

FIGURE 8-11. Permissions dialog box of Java Plug-In Software.

A Directory Viewer Applet

This section provides a simple example of an applet for displaying entries and attri-
butes in the sample directory on the CD-ROM that accompanies this book. This rudi-
mentary example is presented here mainly to explain how to set up applets; more
full-featured examples are provided in subsequent chapters of this book.

A Simple Example for Java Plug-In Software

The DirBrowser class, a simple applet, uses a JTree component to display the
entries in the directory hierarchy and a JTextArea component to display the attri-
butes of the selected entry. The JTree and JTextArea components are in a
JSplitPane component.

A Directory Viewer Applet 229

FIGURE 8-12. Policy Entry dialog box after adding socket permission.

Each node or leaf in the tree represents an LDAP entry in the directory. When the
user selects a node, the applet displays the attributes for the entry corresponding to
the selected node. When the user expands a node in the tree, the applet queries for
entries two levels below the selected node and adds the resulting entries to the tree.
The applet queries two levels below (rather than one level) to determine if the child
entries are branch nodes or leaves. If the applet queried only one level down, all child
entries would appear to be leaves and not branch nodes.

The init method that follows sets up the JTree, JTextArea, and JSplitPane
components and performs an initial search of the directory to find all entries that are
two levels below the root node. The method adds these entries as nodes to the tree. It
also sets up a tree expansion listener and a tree selection listener. The tree expansion
listener searches the directory for additional levels of entries when a tree node is
expanded. The tree selection listener searches the directory for the selected entry and
displays the attributes of the entry in the text area.

import java.io.*;

import java.util.*;

import javax.swing.*;

import javax.swing.event.*;

import javax.swing.tree.*;

import java.awt.*;

import java.awt.event.*;

import netscape.ldap.*;

/**

* Applet that displays a tree view of a directory

*/

public class DirBrowser extends JApplet {

/**

* Default constructor

*/

public DirBrowser() {

/* Netscape Communicator and Internet Explorer 4.0

unconditionally print an error message to the

Java console when an applet attempts to access

the AWT system event queue. */

getRootPane().putClientProperty(

"defeatSystemEventQueueCheck",

Boolean.TRUE);

}

/**

230 More Power to the Browser: An Applet That Speaks LDAP

* Constructor with explicit parameters, for calling

* as an application

*

* @param host host name of directory server

* @param port port number of directory server

* @param base base DN of DIT to display

*/

public DirBrowser(String host, int port, String base) {

this.host = host;

this.port = port;

this.base = base;

isApplet = false;

}

/**

* Standard applet entry point; create the tree view

*/

public void init() {

/* Get parameters from applet tags if present */

String s = getParameter("host");

if ((s != null) && (s.length() > 0)) {

host = s;

}

s = getParameter("base");

if ((s != null) && (s.length() > 0)) {

base = s;

}

s = getParameter("port");

if ((s != null) && (s.length() > 0)) {

port = Integer.parseInt(s);

}

/* Create the root of the tree and

get the entries beneath the root. */

DefaultMutableTreeNode root =

new DefaultMutableTreeNode(base);

addChildren(root);

/* Set up the area for displaying attributes. */

attributeListing = new JTextArea();

attributeListing.setEditable(false);

JScrollPane attributePane =

new JScrollPane(attributeListing);

attributePane.setVerticalScrollBarPolicy(

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);

attributePane.setHorizontalScrollBarPolicy(

A Directory Viewer Applet 231

JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

Dimension dim = new Dimension(300, 150);

attributePane.setMinimumSize(dim);

attributePane.setPreferredSize(dim);

/* Create the tree for displaying entries

in the directory hierarchy. */

final JTree tree = new JTree(root);

tree.getSelectionModel().setSelectionMode

(TreeSelectionModel.SINGLE_TREE_SELECTION);

tree.addTreeExpansionListener(

new TreeExpansionListener() {

/* If the tree is expanded, get the

children of the expanded entry. */

public void treeExpanded(TreeExpansionEvent e) {

DefaultMutableTreeNode entry =

(DefaultMutableTreeNode)

e.getPath().getLastPathComponent();

addChildren(entry);

}

public void treeCollapsed(TreeExpansionEvent e) {

}

});

tree.addTreeSelectionListener(

new TreeSelectionListener() {

/* If a node or leaf is selected, display

the attributes of that entry. */

public void valueChanged(TreeSelectionEvent e) {

DefaultMutableTreeNode entry =

(DefaultMutableTreeNode)

e.getNewLeadSelectionPath().

getLastPathComponent();

String attributeString =

flattenAttributes(entry);

attributeListing.setText(attributeString);

attributeListing.setCaretPosition(0);

}

});

JScrollPane treeView = new JScrollPane(tree);

dim = new Dimension(300, 150);

treeView.setMinimumSize(dim);

treeView.setPreferredSize(dim);

/* Set up the tree and text area components

in a split pane. */

JSplitPane twoPanes =

232 More Power to the Browser: An Applet That Speaks LDAP

new JSplitPane(JSplitPane.VERTICAL_SPLIT);

twoPanes.setTopComponent(treeView);

twoPanes.setBottomComponent(attributePane);

twoPanes.setDividerLocation(150);

/* Add the split pane to the main content pane. */

getContentPane().add(twoPanes,

BorderLayout.CENTER);

}

/**

* Display the entries one level

* below a selected entry. The parent argument

* identifies the node to be expanded.

*/

protected void addChildren(

DefaultMutableTreeNode parent) {

DefaultMutableTreeNode entry = null;

DefaultMutableTreeNode subEntry = null;

LDAPEntry childEntry, grandchildEntry;

String childEntryDN;

try {

LDAPConnection conn = getConnection();

if (conn == null) {

return;

}

/* Get only the cn attribute. */

String[] attrNames = { "cn" };

/* If the node is the root node, query the

directory to get the child entries.*/

if (parent.isRoot()) {

/* Search all entries that are

one level below the current entry.*/

LDAPSearchResults results =

conn.search(base,

conn.SCOPE_ONE,

"(objectclass=*)",

attrNames,

false);

/* Get the DN for each result, and use

the DN as the string value of the node. */

while (results.hasMoreElements()) {

childEntry = results.next();

entry = new DefaultMutableTreeNode(

A Directory Viewer Applet 233

childEntry.getDN());

/* Add the new node as a child of the

top-level node. */

parent.add(entry);

/* Search for entries that are one level

beneath the child entry to determine

if the child entry is a leaf or a node.*/

LDAPSearchResults resUnderEntry =

conn.search(childEntry.getDN(),

conn.SCOPE_ONE,

"(objectclass=*)",

attrNames,

false);

/* Get the DN of each result and add the DN

as a "grandchild" node under the child

node.*/

while (resUnderEntry.hasMoreElements()) {

grandchildEntry = resUnderEntry.next();

subEntry =

new DefaultMutableTreeNode(

grandchildEntry.getDN());

entry.add(subEntry);

}

}

/* If the node passed in is not the root node,

the child entries (in the tree) should

already exist (from the previous query). Use

the tree hierarchy to get the child entries,

and then query each child entry to get the

"grandchild" entries. (This determines

whether or not the child entry is a leaf or

a node.) */

} else {

/* Get the child entries in the tree. */

Enumeration childEntries = parent.children();

while (childEntries.hasMoreElements()) {

entry = (DefaultMutableTreeNode)

childEntries.nextElement();

/* Each existing child entry in the tree

contains the DN of that entry. Get the

DN. */

childEntryDN =

(String)entry.getUserObject();

/* Use this "child" DN to find the

234 More Power to the Browser: An Applet That Speaks LDAP

"grandchild" entries. */

LDAPSearchResults resUnderEntry =

conn.search(childEntryDN,

conn.SCOPE_ONE,

"(objectclass=*)",

attrNames,

false);

/* Add each "grandchild" entry to the

tree.*/

while (resUnderEntry.hasMoreElements()) {

grandchildEntry = resUnderEntry.next();

subEntry =

new DefaultMutableTreeNode(

grandchildEntry.getDN());

entry.add(subEntry);

}

}

}

} catch(Exception e) {

/* Any errors - connecting or searching - end up

here and terminate the expansion */

System.out.println(e.toString());

}

}

/**

* "Flatten" the list of attributes as a string.

* Instead of using LDAPEntry.toString(), which results in

* a long string containing all attributes and values,

* this method queries the directory for the entry and

* returns a string containing newline-delimited attribute

* names and values.

*/

private String flattenAttributes(

DefaultMutableTreeNode entry) {

String entryDN, attributeString;

try {

LDAPConnection conn = getConnection();

if (conn == null) {

return "";

}

/* Get the DN from the tree node. */

entryDN = (String)entry.getUserObject();

/* Get the corresponding LDAP entry from

A Directory Viewer Applet 235

the directory.*/

LDAPEntry fullEntry = conn.read(entryDN);

/* Get the attributes for the entry. */

LDAPAttributeSet attributeSet =

fullEntry.getAttributeSet();

Enumeration enumAttrs =

attributeSet.getAttributes();

attributeString = "Attributes:";

/* Build a string containing the attribute names

and values. Delimit the names and values with

newline characters.*/

while (enumAttrs.hasMoreElements()) {

LDAPAttribute anAttr =

(LDAPAttribute)enumAttrs.nextElement();

String attrName = anAttr.getName();

attributeString =

attributeString + "\n " + attrName;

Enumeration enumVals =

anAttr.getStringValues();

while (enumVals.hasMoreElements()) {

String aVal =

(String)enumVals.nextElement();

attributeString =

attributeString + "\n " + aVal;

}

}

attributeString += "\n";

return attributeString;

} catch(Exception e) {

System.out.println(e.toString());

}

return "";

}

/**

* Connect to server, if not already done

*

* @return connection to directory server

*/

protected LDAPConnection getConnection() {

if (connection == null) {

try {

/* Connect to the LDAP server. */

connection = new LDAPConnection();

236 More Power to the Browser: An Applet That Speaks LDAP

connection.connect(host, port);

} catch (LDAPException ex) {

System.out.println(ex.toString());

connection = null;

}

}

return connection;

}

public static void main(String[] args) {

if (args.length != 3) {

System.out.println("Usage: java DirBrowser " +

"<host> <port> <baseDN>");

System.exit(1);

}

String host = args[0];

int port = Integer.parseInt(args[1]);

String baseDN = args[2];

DirBrowser browser = new DirBrowser(host,

port,

baseDN);

browser.init();

JFrame frame = new JFrame("Directory Browser");

frame.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

Window win = e.getWindow();

win.setVisible(false);

win.dispose();

System.exit(0);

}

});

frame.getContentPane().add(browser);

frame.pack();

// Center frame

Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();

Dimension size = frame.getSize();

screenSize.height = screenSize.height/2;

screenSize.width = screenSize.width/2;

size.height = size.height/2;

size.width = size.width/2;

int y = screenSize.height - size.height;

int x = screenSize.width - size.width;

frame.setLocation(x, y);

A Directory Viewer Applet 237

frame.show();

}

/* JTextArea for displaying attributes of an entry. */

private JTextArea attributeListing;

/* Connection to directory */

private LDAPConnection connection = null;

private String host = "localhost";

private int port = 389;

private String base = "o=airius.com";

private boolean isApplet = true;

}

To set up the applet for use with Java Plug-In Software, you need to use the JDK
security tools to sign the applet.

Before you package the applet and sign the file, you need to create a BeanInfo
file for your applet because of a known problem with Java Plug-In Software and
Internet Explorer. If the applet is served by Microsoft Internet Information Server
or Microsoft Personal Web Server, Java Plug-In Software and Internet Explorer
expect to find a BeanInfo class for your applet, even though your applet is not a
JavaBean. If no BeanInfo class is present, the AppletClassLoader may crash with a
NullPointerException.

You can derive your BeanInfo class from the SimpleBeanInfo class:

import java.beans.*;

public class DirBrowserBeanInfo extends SimpleBeanInfo {

public DirBrowserBeanInfo() {

super();

}

}

After you create this file, compile your classes and create a JAR file:

D:\>jar cvf DirBrowser.jar *.class

added manifest

adding: DirBrowser$1.class (in=901) (out=485) (deflated 46%)

adding: DirBrowser$2.class (in=1094) (out=579) (deflated 47%)

adding: DirBrowser.class (in=4842) (out=2379) (deflated 50%)

adding: DirBrowserBeanInfo.class (in=235) (out=180) (deflated 23%)

Next run the jarsigner tool to create a signed JAR file. The following ex-
ample creates a signed JAR file named sDirBrowser.jar by signing the JAR file
DirBrowser.jar with the certificate testcert.

238 More Power to the Browser: An Applet That Speaks LDAP

D:\>jarsigner -signedjar sDirBrowser.jar DirBrowser.jar testcert

Enter Passphrase for keystore: YourPassword

Copy the JAR file (along with the ldapjdk.jar JAR file for Netscape Directory
SDK) to your Web server. Set up an HTML page to load your applet. Since the applet
should be loaded by Java Plug-In Software and not by the browser’s default Java
virtual machine, you need to set up the Web page to use Java Plug-In Software. An
example follows.

<html>

<head>

<title>DirBrowser</title>

</head>

<body BGCOLOR="#ffffff" LINK="#000099">

<!— The OBJECT tag specifies the use of

Java Plug-In Software. If the user does not have

the software loaded (as identified by the class ID),

the codebase attribute identifies the location of the

CAB file that contains Java Plug-In Software. —>

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

width="300" height="300" align="baseline"

codebase="

http://java.sun.com/products/plugin/1.2/

jinstall-12-win32.cab#Version=1,2,0,0">

<!— These parameters identify your applet and

the JAR files required by your applet. —>

<PARAM NAME="code" VALUE="DirBrowser.class">

<PARAM NAME="archive" VALUE="ldapjdk.jar, sDirBrowser.jar"

<PARAM NAME="type" VALUE="application/x-java-applet;version=1.2">

<PARAM NAME="host" VALUE="directory.airius.com">

<PARAM NAME="port" VALUE="389">

<PARAM NAME="base" VALUE="o=airius.com">

<!— Since IE ignores any statements between the COMMENT tags,

you can use these statements for Netscape Navigator. —>

<COMMENT>

<!— The EMBED tag specifies that Java Plug-In

Software should load your applet. The type identifies

Java Plug-In Software, the code and archive

attributes specify your applet, and the pluginspage

attribute specifies the location where Java Plug-In

Software can be installed (if it is not already installed

on the user’s system. —>

<EMBED type="application/x-java-applet;version=1.2" width="300"

height="300" align="baseline" code="DirBrowser.class"

A Directory Viewer Applet 239

archive="ldapjdk.jar, sDirBrowser.jar"

pluginspage="

http://java.sun.com/products/plugin/1.2/plugin-install.html"

host="directory.airius.com"

port="389"

base="o=airius.com">

<NOEMBED>

No JDK 1.2 support for APPLET!!

</NOEMBED>

</EMBED>

</COMMENT>

</OBJECT>

</body>

</html>

Figure 8-13 shows the applet running in Internet Explorer, using Java Plug-In
Software.

240 More Power to the Browser: An Applet That Speaks LDAP

FIGURE 8-13. Directory browser applet in Internet Explorer with
Java Plug-In Software.

Conclusion

Writing an applet rather than a stand-alone application to access the directory has
some benefits:

• Users do not need to install and configure the application. They can just
load the applet from the Web server.

• When you update your code, you just need to replace the applet on the Web
server. You do not need to reinstall or upgrade an application on every
user’s machine.

Because of the sandbox restrictions on applets that run within browsers, you
need to sign your applet and use the appropriate browser-specific calls to request per-
mission to connect to the LDAP server on the network. In this chapter we have dis-
cussed the different procedures for doing this in Netscape Navigator, in Microsoft
Internet Explorer, and in any browser using Sun’s Java Plug-In Software.

Conclusion 241

Both Netscape Navigator and Microsoft Internet Explorer allow JavaScript devel-
opers to invoke methods in Java applets. This means that an HTML page can use

JavaScript to take advantage of the classes in Directory SDK for Java. For example,
you can set up an HTML form that queries your directory server.

Netscape Navigator also allows you to create and manipulate Java objects
directly in JavaScript. Internet Explorer requires that you wrap them in COM (Com-
ponent Object Model) objects first.

This chapter explains how to access methods in an LDAP-powered Java applet,
as well as how to access the Java LDAP classes directly, from JavaScript in an HTML
page.

Accessing Java Applets from JavaScript

Netscape Navigator 3.0 and more recent versions use a technology called LiveCon-
nect to enable Java, JavaScript, and browser plug-ins to interact. To be accessed from
JavaScript, the methods in a Java applet must be public methods. As mentioned in
Chapter 8, try to minimize any potential security risks when writing your public
methods. For example, do not write a public method that simply writes to the file sys-
tem or connects to the network.

After you write an applet with the public methods that you want exposed to
JavaScript code, request permissions to connect to the network (if your LDAP server
is not on the same machine as your Web server) and sign your applet. For more infor-
mation on requesting privileges and signing applets, see Chapter 8.

Then, in your JavaScript code, use the document.applets property to access the
Java methods. For example, if you named the applet “DirApplet” (using the <APPLET>

Scripting LDAP:
JavaScript
and Java

243

C H A P T E R 9

tag), you can invoke the public method named search in the applet by using the fol-
lowing JavaScript code:

document.applets.DirApplet.search();

You can also access the applet by its index (for example, document.

applets[0]).
Similarly, when you run a Java applet in Internet Explorer, most of the public

methods and variables in the applet are available to scripting languages that support
the ActiveX scripting protocol (for example, JavaScript).

You can write a Java applet that exposes public methods for searching the direc-
tory and include the applet in an HTML page with JavaScript code that invokes those
methods. In your applet, be sure to assert the permission to connect to the LDAP
server (if the server is running on a different machine from your Web server), and be
sure to sign the CAB file that contains your applet. For details on asserting permis-
sions and signing CAB files, see Chapter 8.

The following applet code defines a public method search that searches an
LDAP directory. The HTML example that follows this applet code demonstrates how
to invoke search from JavaScript. The applet is invisible; that is, it does not include
a GUI.

Note that this example reads the java.vendor system property to determine
which browser is loading the applet. Before signing your CAB file for Internet Ex-
plorer, run the piniedit utility to edit your permissions .ini file, and include the per-
mission to read the java.vendor system property. If you don’t, a SecurityException
will be thrown.

To compile this example, you will need to have both the Navigator and the Inter-
net Explorer system JAR files in your CLASSPATH. In Windows, use the following com-
mand:

set CLASSPATH=%CLASSPATH%;"c:/program files/netscape/communicator/

program/java/classes/java40.jar";c:/winnt/java/classes/

classes.zip

In UNIX the command is

setenv CLASSPATH $CLASSPATH\:/usr/netscape/communicator/program/java/

classes/java40.jar:/home/me/classes.zip

The sample applet code follows.

import java.io.*;

import java.util.*;

244 Scripting LDAP: JavaScript and Java

import java.awt.*;

import java.applet.*;

import netscape.ldap.*;

// Must have Navigator’s java40.jar in the CLASSPATH

import netscape.security.PrivilegeManager;

// Must have Internet Explorer’s classes.zip in the CLASSPATH

import com.ms.security.*;

/**

* Invisible applet that searches a directory and returns a

* single string with all results, formatted with line feeds.

* The host, port, and base (base DN for search) are read from

* applet parameter tags.

*/

public class DirApplet extends Applet {

/**

* Standard applet entry point

*/

public void init() {

super.init();

// Get parameters from applet tags if present

String s = getParameter("host");

if ((s != null) && (s.length() > 0)) {

host = s;

}

s = getParameter("base");

if ((s != null) && (s.length() > 0)) {

base = s;

}

s = getParameter("port");

if ((s != null) && (s.length() > 0)) {

port = Integer.parseInt(s);

}

// Detect the browser version

try {

String vendor =

System.getProperty("java.vendor");

if (vendor.indexOf("Netscape") != -1) {

browser = NETSCAPE;

} else if (vendor.indexOf("Microsoft")

!= -1) {

browser = MICROSOFT;

}

} catch (SecurityException e) {

Accessing Java Applets from JavaScript 245

System.out.println(e.toString());

}

}

/**

* Searches the directory and returns the

* results as a single string. Entries,

* attributes, and values are delimited

* by newline characters.

*

* @param filter an LDAP search filter expression

* @return a string containing all search results, or

* an error message with stack trace on error

*/

public String search(String filter) {

String str = new String();

try {

// Get permission to connect to the network

if (browser == NETSCAPE) {

PrivilegeManager.enablePrivilege(

"UniversalConnect");

PrivilegeManager.enablePrivilege(

"UniversalThreadAccess");

} else if (browser == MICROSOFT) {

PolicyEngine.assertPermission(

PermissionID.NETIO);

}

// Connect to the LDAP server

connection = new LDAPConnection();

connection.connect(host, port);

// Perform the search

LDAPSearchResults results

= connection.search(base,

LDAPConnection.SCOPE_SUB,

filter, null, false);

// Revert the privileges so that

// they are no longer enabled

if (browser == NETSCAPE) {

PrivilegeManager.revertPrivilege(

"UniversalConnect");

PrivilegeManager.revertPrivilege(

"UniversalThreadAccess");

} else if (browser == MICROSOFT) {

PolicyEngine.revertPermission(

PermissionID.NETIO);

246 Scripting LDAP: JavaScript and Java

}

str = "Entries:\n";

// Loop through the results

while (results.hasMoreElements()) {

LDAPEntry entry = results.next();

// Start each result with the DN

str += entry.getDN() + "\n";

// Get the attributes for the entry

LDAPAttributeSet attributeSet =

entry.getAttributeSet();

Enumeration enumAttrs =

attributeSet.getAttributes();

str += "Attributes:\n";

// Delimit the attribute names

and values with newline characters

while (enumAttrs.hasMoreElements()) {

LDAPAttribute anAttr =

(LDAPAttribute)enumAttrs.nextElement();

String attrName = anAttr.getName();

str += " " + attrName + "\n";

Enumeration enumVals =

anAttr.getStringValues();

// Get the values of the attribute

while (enumVals.hasMoreElements()) {

String aVal =

(String)enumVals.nextElement();

str += " " + aVal + "\n";

}

}

str += "\n";

}

} catch (Exception e) {

PrintWriter pWriter =

new PrintWriter(new CharArrayWriter());

e.printStackTrace(pWriter);

str += e.toString() + ":\n\t"

+ pWriter.toString();

return str;

}

return str;

}

// Connection to directory

private LDAPConnection connection = null;

// Default parameters for connection and search base

Accessing Java Applets from JavaScript 247

private String host = "localhost";

private int port = 389;

private String base = "o=airius.com";

// Browser type

private static final int NETSCAPE = 0;

private static final int MICROSOFT = 1;

private int browser = -1;

}

The following HTML page uses JavaScript code to invoke the search method
in the applet DirApplet. The applet has been signed and packaged in the JAR file
DirApplet.jar and in the CAB file DirApplet.cab (using the signtool and
signcode utilities, respectively). The HTML page contains a text box for entering
search criteria and a text area for displaying the results.

If you click the Search button or submit the form, the JavaScript function
searchDirectory (which is set up as an onClick and onSubmit event handler for the
button and form) invokes the search method, passing in the value in the text box.
The JavaScript code gets the return value of this method (the results formatted as a
single string) and displays the results in the text area.

<HTML>

<HEAD>

<TITLE>Example Using JavaScript Code to Access DirApplet</TITLE>

<SCRIPT LANG="JavaScript">

function searchDirectory() {

document.LDAPSearch.results.value =

document.applets.DirApplet.search(document.LDAPSearch.filter.value);

return false;

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR="#ffffff" LINK="#000099">

<APPLET NAME="DirApplet" HEIGHT="1" WIDTH="1"

CODE="DirApplet.class" ARCHIVE="DirApplet.jar"

CABBASE="DirApplet.cab">

<PARAM NAME="host" VALUE="localhost">

<PARAM NAME="port" VALUE="389">

<PARAM NAME="base" VALUE="o=airius.com">

</APPLET>

<FORM NAME="LDAPSearch"

ONSUBMIT="searchDirectory(); return false">

<P>Enter the search criteria:</P>

248 Scripting LDAP: JavaScript and Java

<INPUT TYPE="text" NAME="filter" SIZE=60>

<INPUT TYPE="button" VALUE="search"

ONCLICK="searchDirectory()">

<P>Results: </P>

<TEXTAREA NAME="results" ROWS=5 COLS=50 WRAP="OFF">

</TEXTAREA>

</FORM>

</BODY>

</HTML>

The page appears in the browser as in Figure 9-1.

Accessing Java Applets from JavaScript 249

FIGURE 9-1. Accessing an invisible LDAP applet from JavaScript.

Chapter 10 will discuss how to access non-applet JavaBeans from JavaScript.
The main differences are in how applets are declared in HTML, compared to compo-
nents that are not applets, and in how applets are initialized or launched.

Accessing Java Objects from JavaScript

In Netscape Navigator you can use the LiveConnect technology to access Java pack-
ages, classes, methods, and variables directly from JavaScript code. You do not need
to write an applet with public functions in order to access Java.

When you invoke the constructor for a Java class in JavaScript, LiveConnect cre-
ates a wrapper object for that Java object. Invoking methods and accessing properties
for the wrapper object causes methods to be invoked and properties to be accessed in
the Java object.

Behind the scenes, the following special LiveConnect objects are used as wrap-
pers for Java objects:

• JavaArray is a wrapped Java array that you access from JavaScript code.

• JavaClass is a reference to a Java class in JavaScript code.

• JavaObject is a wrapped Java object that you access from JavaScript code.

• JavaPackage is a reference to a Java package in JavaScript code.

The JavaScript engine converts the data types in Java to corresponding data
types in JavaScript. For example, the following line of JavaScript code creates a vari-
able, connection, that is a JavaObject. This JavaObject contains an instance of an
LDAPConnection Java object:

<SCRIPT LANG="JavaScript">

var connection = new netscape.ldap.LDAPConnection();

connection.connect("directory.airius.com", 389);

...

</SCRIPT>

Note that if the Java class does not belong to the java, sun, or netscape pack-
ages, you must access the class through the JavaScript Packages object. For example,
if you define a class MyLDAP in the package MyPackage, you can construct a new
MyLDAP object in the following way:

<SCRIPT LANG="JavaScript">

var x = new Packages.MyPackage.MyLDAP();

250 Scripting LDAP: JavaScript and Java

</SCRIPT>

If your class is not in a package but is in the CLASSPATH, you can omit the pack-
age name:

<SCRIPT LANG="JavaScript">

var x = new Packages.MyLDAP();

</SCRIPT>

The HTML file jsldap.html illustrates how to search a directory and how to
read and present all attributes of an entry.

The doSearch JavaScript function shown in the following block of code creates
an LDAPConnection object, extracts various parameters from the HTML form ele-
ments, and then does a subtree search. Depending on the user’s selection of one of two
radio buttons, either the DN or the common name of each entry found is displayed in
an HTML text area.

<HTML>

<HEAD>

<TITLE>Searching in LDAP with LiveConnect</TITLE>

</HEAD>

<SCRIPT LANGUAGE="JavaScript" ARCHIVE="JSLDAPHTML.jar" ID="1">

// Do a subtree search

function doSearch() {

// Check if DNs or CNs are to be displayed

for (var i = 0; i < document.LDAPForm.AttrChoice.length; i++) {

if (document.LDAPForm.AttrChoice[i].checked)

break;

}

// Create a connection

conn = new LDAPConnection();

java.lang.System.out.println("SDK version: " +

conn.getProperty("version.sdk"));

// Ask the user for permission to establish a remote

// connection

netscape.security.PrivilegeManager.enablePrivilege(

"UniversalConnect");

netscape.security.PrivilegeManager.enablePrivilege(

"UniversalPropertyRead");

// Connect to selected host

conn.connect(3, // LDAPv3

Accessing Java Objects from JavaScript 251

document.LDAPForm.host.value,

parseInt(document.LDAPForm.port.value),

"", // Anonymous

"");

res = conn.search(

document.LDAPForm.searchbase.value, // search base

2, // = SCOPE_SUB, search whole subtree

document.LDAPForm.searchfilter.value, //filter

null, // return all attributes

false); // return values as well as attribute names

// Concatenate all results to be printed in a String

str = new java.lang.String();

while(res.hasMoreElements()) { // Iterate on entries

entry = res.next();

// Get the distinguished name of the entry

if (document.LDAPForm.AttrChoice[i].value == "") {

str += entry.getDN() + "\r\n";

} else {

// Get the common name attribute

attr = entry.getAttribute("cn");

// Get the values of the attribute

vals = attr.getStringValues();

while(vals.hasMoreElements()) {

str += vals.nextElement() + "\r\n";

}

}

}

// Display the results

document.LDAPForm.searchresults.value = str;

}

The function doRead starts off the same, but it reads a specific entry:

// Do a base search for all attributes of an entry.

function doRead() {

// Create a connection

conn = new LDAPConnection();

// Ask the user for permission to establish a remote

// connection

netscape.security.PrivilegeManager.enablePrivilege(

"UniversalConnect");

netscape.security.PrivilegeManager.enablePrivilege(

"UniversalPropertyRead");

// Connect to selected host

252 Scripting LDAP: JavaScript and Java

conn.connect(3, // LDAPv3

document.LDAPForm.host.value,

parseInt(document.LDAPForm.port.value),

"", // Anonymous

"");

// If we wanted to modify or delete an entry, we would

// authenticate here as a real user.

// Read the entry

entry = conn.read(document.LDAPForm.textbox.value);

// Concatenate all results to be printed in a String

str = new java.lang.String();

res = entry.getAttributeSet().getAttributes();

// Iterate on attributes

while(res.hasMoreElements()) {

attr = res.nextElement();

vals = attr.getStringValues();

if (vals != null) {

// Iterate on values of the attribute

while(vals.hasMoreElements()) {

str += attr.getName() + ": " +

vals.nextElement() + "\r\n";

}

}

}

// Display the results

document.LDAPForm.result.value= str;

}

</SCRIPT>

Parameters for the LDAP server to which a connection should be made and for
the search that is to be performed are provided through standard HTML form ele-
ments: text fields and radio buttons. Two buttons have onClick event handlers to call
doSearch and doRead:

Search base <INPUT TYPE=text NAME="searchbase" SIZE=40

VALUE="o=airius.com">

<P>

Search filter <INPUT TYPE=text NAME="searchfilter" SIZE=40

VALUE="cn=a*">

<P>

<INPUT TYPE="radio" NAME="AttrChoice" VALUE="" CHECKED>

Show Distinguished names

<INPUT TYPE="radio" NAME="AttrChoice" VALUE="cn">

Show Common names

Accessing Java Objects from JavaScript 253

<P>

<INPUT TYPE=button VALUE="search"

onClick="doSearch()" ID="2">

<P>

<TEXTAREA NAME="searchresults" WRAP="virtual" ROWS=15 COLS=65>

</TEXTAREA>

<P>

<H3>Reading an entry</H3>

<P>

To read an entry and list all attributes, enter a distinguished

name and press "readDN". An example of an entry in the demo

database is:

<P>

<PRE>

uid=tmorris,ou=People,o=airius.com

</PRE>

<P>

Distinguished name <INPUT TYPE=text NAME="textbox" SIZE=50

VALUE="uid=tmorris,ou=People,o=Airius.com">

<P>

<INPUT TYPE=button VALUE="readDN"

onClick="doRead()" ID="3">

<P>

<TEXTAREA NAME="result" WRAP="virtual" ROWS=15 COLS=65></TEXTAREA>

</FORM>

The doSearch output on the HTML page for the default parameters is presented
in Figure 9-2, and the output of doRead in Figure 9-3.

JavaScript Gotchas

Because of the differences between the Java language and the JavaScript language, you
need to consider the following when using LiveConnect:

• Because the versions of JavaScript prior to 1.4 do not support exceptions,
you need to write a wrapper Java class to trap any potential exceptions.
Otherwise, if there is an exception (for example, if a server is not available
at the specified host and port), your script will abort. Navigator posts a
discrete message in the status bar, as Figure 9-4 shows. If you type
“javascript:” in the URL field of the browser, a dialog box appears and dis-
plays information about the error, as in Figure 9-5.

254 Scripting LDAP: JavaScript and Java

• Because LDAP attributes have multiple values, you may want to pass the
values of an attribute between your Java classes and JavaScript code as an
array of strings. To do this, you can write a JavaScript function that will
create a JavaScript array to convert the Java String array. Java String
arrays are not interchangeable with JavaScript arrays of strings.

• If the LDAP server is not running on the same machine as the Web server,
you need to request permission to connect to the LDAP server. You also
need to sign your JavaScript code.

The rest of the chapter explains these points in more detail. For more information
on LiveConnect, see the Core JavaScript Guide (http://developer.netscape.com/
docs/manuals/js/core/jsguide/index.htm).

Accessing Java Objects from JavaScript 255

FIGURE 9-2. Search results from JavaScript.

Handling Java Exceptions in JavaScript

With JavaScript 1.4, you can throw and catch exceptions using the new throw and
try...catch statements. If Java code throws an exception, the exception is passed on
to your JavaScript code. At the time of this writing, however, the latest versions of
Netscape Navigator (4.08 through 4.61) support only JavaScript 1.3, which provides
no statements for handling Java exceptions.

To handle exceptions, you need to write a wrapper Java class with methods that
(1) catch the exceptions, (2) possibly print out error messages about the exceptions,
and (3) return status codes to indicate the success or failure of the operation.

256 Scripting LDAP: JavaScript and Java

FIGURE 9-3. Reading attributes with JavaScript.

FIGURE 9-4. Navigator message on Java exception.

The following Java code in the wrapper class JSLDAPConnection provides a
method (safeConnect) for trapping exceptions when connecting to the LDAP server
and a corresponding method for disconnecting.

public class JSLDAPConnection extends LDAPConnection {

public JSLDAPConnection() {

super();

}

/**

* Connect to LDAP server

*

* @return 0 on success, an LDAP error code failure

*/

public int safeConnect(int version, String host, int port,

String authdn, String authpw) {

try {

connect(version, host, port, authdn, authpw);

} catch(LDAPException e) {

return (_errorCode = e.getLDAPResultCode());

Accessing Java Objects from JavaScript 257

FIGURE 9-5. JavaScript message dialog box.

}

_errorCode = 0;

return 0;

}

/**

* Disconnect from LDAP server

*

* @return 0 on success, an LDAP error code failure

*/

public int safeDisconnect() {

try {

disconnect();

} catch(LDAPException e){

return (_errorCode = e.getLDAPResultCode());

}

_errorCode = 0;

return 0;

}

}

Your JavaScript code can construct a new JSLDAPConnection object and invoke
the safeConnect method to connect to the LDAP server:

<SCRIPT LANG="JavaScript">

var connection = new Packages.JSLDAPConnection();

var isConnected = connection.safeConnect(3, "directory.airius.com",

389, "", "");

</SCRIPT>

JSLDAPConnection also has wrappers for searching and reading, and a method
to get the latest status code from an LDAP operation:

/**

* Performs the search specified by the criteria you enter.

* This method also allows you to specify constraints for the search

* (such as the maximum number of entries to find or the

* maximum time to wait for search results). <P>

*

* @param base base distinguished name from which to search

* @param scope scope of the entries to search

* @param filter search filter specifying the search criteria

* @param attrs list of attributes you want returned in the search

* results

258 Scripting LDAP: JavaScript and Java

* @param cons constraints specific to this search (e.g., the

* maximum number of entries to return)

* @param attrsOnly If true, returns the names but not the values of the

* attributes found. If false, returns the names and values for

* attributes found.

* @return JSLDAPSearchResults The results of the search,

* or null on failure. If null, call

* getErrorCode() to get the LDAP error code.

*/

public JSLDAPSearchResults

safeSearch(String base,

int scope,

String filter,

String[] attrs,

boolean attrsOnly,

LDAPSearchConstraints cons) {

try {

LDAPSearchResults res = search(base, scope,

filter, attrs,

attrsOnly, cons);

_errorCode = 0;

return new JSLDAPSearchResults(res);

} catch(LDAPException e) {

_errorCode = e.getLDAPResultCode();

return null;

}

}

/**

* Reads the entry for the specified distiguished name (DN)

* and retrieves all attributes for the entry.

*

* @param DN distinguished name of the entry you want

* to retrieve

* @return the specified entry, or null if the entry is not

* found

*/

public LDAPEntry safeRead (String DN) {

try {

LDAPEntry entry = read(DN);

_errorCode = 0;

return entry;

} catch(LDAPException e) {

Accessing Java Objects from JavaScript 259

_errorCode = e.getLDAPResultCode();

return null;

}

}

/**

* Get latest LDAP error code

*

* @return latest LDAP error code

*/

public int getErrorCode() {

return _errorCode;

}

private int _errorCode = 0;;

}

We can now write a new version of the HTML page: jsldapsafe.html. It calls
the wrapper methods and processes any errors returned:

// Create a connection

var conn = new Packages.JSLDAPConnection();

...

// Connect to selected host

err = conn.safeConnect(3, // LDAPv3

document.LDAPForm.host.value,

parseInt(document.LDAPForm.port.value),

"", // Anonymous

"");

if (err != 0) {

alert("Failed to connect to " +

document.LDAPForm.host.value +

":" + document.LDAPForm.port.value);

return;

}

If the specified LDAP server is not accessible, the user now sees a more helpful
error dialog box, as in Figure 9-6. Now that we have control of exceptions, we can do
more sophisticated things, as we will see in the remainder of this chapter.

Iterating on search results with LDAPSearchResults.next can also throw an
exception (for example, if more results were requested than the server is configured to
return). The JSLDAPSearchResults class wraps LDAPSearchResults to allow safe
enumeration in JavaScript. It doesn’t extend LDAPSearchResults, because there is no

260 Scripting LDAP: JavaScript and Java

easy way for an extension class to access the contents of LDAPSearchResults; rather it
keeps a reference to one LDAPSearchResults in a member variable: _results. If call-
ing next throws an exception, JSLDAPSearchResults returns null instead and stores
the error code for retrieval by the client:

/**

* Returns the next LDAP entry from the search results

* or null if the next result is an

* exception (including a referral). If null,

* the LDAP result code is available with getErrorCode.

* @return the next LDAP entry in the search results

*/

public LDAPEntry next() {

try {

LDAPEntry entry = _results.next();

_errorCode = 0;

return entry;

} catch(LDAPException e) {

_errorCode = e.getLDAPResultCode();

return null;

}

}

The JavaScript code can now detect and process an exception during the itera-
tion of search results:

while(res.hasMoreElements()) { // Iterate on entries

Accessing Java Objects from JavaScript 261

FIGURE 9-6. Application-controlled error dialog box on Java
exception.

entry = res.next();

if (res == null) {

alert("Error processing search results; error code = " +

res.getErrorCode());

return;

}

Handling Arrays of Strings

In LDAP, attributes can have multiple values. You can represent the multiple values in
Java and in JavaScript as an array of strings. If you plan to pass a multivalued
attribute as an array of strings from your Java code to your JavaScript code, you need
to convert the Java String array to a JavaScript array of strings. The following
JavaScript function illustrates one way to do this. The javaArray parameter is
assumed to be a Java String array returned from a call to a Java object.

function javaToJS(javaArray){

// Declare an array of JavaScript strings

var jsArray = new Array();

for(var i = 0; i < javaArray.length; i++) {

jsArray[i] = javaArray[i];

}

return (jsArray);

}

Requesting Privileges and Signing Your JavaScript Code

If the LDAP server is running on a different machine from your Web server, you need
to request permission to connect to the LDAP server. Chapter 8 covers permissions in
detail (see the section on writing LDAP applets for Netscape Navigator in that chapter
for more information). The following excerpt from jsldap.html illustrates how to
request permission to connect to the LDAP server.

// Create a connection

conn = new LDAPConnection();

// Ask the user for permission to establish a remote

// connection

netscape.security.PrivilegeManager.enablePrivilege(

"UniversalConnect");

netscape.security.PrivilegeManager.enablePrivilege(

"UniversalPropertyRead");

// Connect to selected host

conn.connect(3, // LDAPv3

262 Scripting LDAP: JavaScript and Java

document.LDAPForm.host.value,

parseInt(document.LDAPForm.port.value),

"", // Anonymous

"");

Next you need to sign your JavaScript code. Netscape’s signtool utility allows
you to sign inline JavaScript code. For details on signing code, getting certificates, and
using signtool, see Chapter 8.

In the <SCRIPT> tag that surrounds your JavaScript functions, set the ARCHIVE
attribute to the name of a JAR file (signtool will create this JAR file as part of the
process of signing the scripts), and set the ID attribute to a unique identifier for each
script section in the file. This ID will identify the signed script segments in the gener-
ated JAR file:

<SCRIPT LANGUAGE="JavaScript" ARCHIVE="JSLDAPHTML.jar" ID="1">

// Do a subtree search

function doSearch() {

...

}

</SCRIPT>

If you have event handlers for a tag (for example, a function to be called when a
button is clicked), you also need to include an ID attribute in the tag. You do not need
to specify separate ARCHIVE attributes for event handlers, as long as they are preceded
by a script with the ARCHIVE attribute. These event handler scripts will be placed in the
same JAR file as the preceding script:

<INPUT TYPE=button VALUE=”search” onClick=”doSearch()” ID=”2”>

When you run signtool, it creates subdirectories named <jarfile>.arc and
<jarfile.arc>\inlineScripts. For each tag with an ID, signtool extracts the
inline JavaScript code to a file named after the ID. The signtool utility places these
files into the inlineScripts directory.

As with signed Java applets (see Chapter 8), signtool creates a META-INF sub-
directory, as well as a manifest.mf file (containing the name and a hash of each file to
be signed), a zigbert.sf signature instruction file (containing a hash of each section
in manifest.mf), and a zigbert.rsa digital signature file (containing a hash of the
zigbert.sf file encrypted with the private key, as well as the certificate for that key).
The signtool utility puts the contents of the META-INF and inlineScripts directo-
ries in a JAR file and removes the .arc directory and all temporary files.

To sign inline JavaScript code with signtool, use the following syntax:

signtool -d <cert_dir> -k <cert_name> -J <code_dir>

Accessing Java Objects from JavaScript 263

where

• <cert_dir> specifies the location of your certificate database and your key
database. For example, in Windows this is typically

C:\Program Files\Netscape\Users\<yourname>.

• <cert_name> specifies the object-signing certificate.

• <code_dir> specifies the directory containing the HTML files that have
JavaScript code you want to sign.

The following example demonstrates how to sign your code. The example uses
the “TestCertificate” certificate to sign the JavaScript code in any HTML files located
in the html directory. If you place jsldap.html in that directory, signtool will create
a JAR file named JSLDAPHTML.jar (as specified by the ARCHIVE attribute of the SCRIPT
tag in jsldap.html). The example expects to find the certificate and key databases in
the directory D:\Program Files\Netscape\Users\username. The information you
need to enter is highlighted in bold.

D:\sourcefiles>signtool -k TestCertificate -d "D:\Program

Files\Netscape\Users\username" -J html

using key "TestCertificate"

using certificate directory: D:\Program Files\Netscape\Users\username

Generating inline signatures from HTML files in: html

Processing HTML file: jsldap.html

signing: html/JSLDAPHTML.jar

Generating html/JSLDAPHTML.arc/META-INF/manifest.mf file..

—> inlineScripts/1

—> inlineScripts/2

—> inlineScripts/3

Generating zigbert.sf file..

adding html/JSLDAPHTML.arc/META-INF/manifest.mf to html/

JSLDAPHTML.jar...(deflated 46%)

adding html/JSLDAPHTML.arc/META-INF/zigbert.sf to html/

JSLDAPHTML.jar...(deflated 41%)

adding html/JSLDAPHTML.arc/META-INF/zigbert.rsa to html/

JSLDAPHTML.jar...(deflated 38%)

jarfile "html/JSLDAPHTML.jar" signed successfully

removing: html/JSLDAPHTML.arc

Directory html signed successfully.

Note that if you make any changes to the HTML file (even adding or deleting
spaces), you need to sign the file and generate the JAR file again.

264 Scripting LDAP: JavaScript and Java

Copy the HTML files and the JAR file, as well as any wrapper classes, to your
Web server.

Accessing the LDAP Classes from JScript in Internet Explorer

Internet Explorer does not make Java classes available automatically to scripts written
in JScript or Visual Basic. To use JScript or Visual Basic with the LDAP classes or any
other classes that you add to Internet Explorer, you must create COM wrappers for
them. Microsoft Visual J++ allows you to select classes that require COM wrappers,
and then it generates them for you.

Another option may be to use the open-source JavaScript interpreter Rhino,
which is written in Java and available at http://www.mozilla.org.

Conclusion

In this chapter we have discussed how to access applets and built-in Java objects from
JavaScript in a safe and efficient way. JavaScript is an effective glue for tying together
Java applets on a Web page or for binding Java applets to HTML-type form elements.
In Netscape Navigator, you can also use JavaScript to access any built-in Java classes
and objects, such as the Java LDAP classes. If not a lot of processing needs to be done,
then having all the client code in JavaScript rather than in Java may make your
HTML page appear more quickly, since no applets need to be downloaded. In addi-
tion, JavaScript does not need be compiled before use.

However, JavaScript has certain limitations compared to Java, and the Java
LDAP classes can be made more JavaScript-friendly by being wrapped in a thin layer
that catches exceptions and passes status codes instead. As with applets, JavaScript
must be signed if it makes calls that imply a connection to a machine other than that
of the Web server.

Conclusion 265

Java is an object-oriented language that lends itself well to encapsulating functional-
ity as components. The JavaBeans specification takes this encapsulation a step fur-

ther, defining how a component publishes its properties and methods and how other
components can discover and access those properties and methods. Many Java devel-
opment environments support the JavaBeans specification. Because of this support,
you can write a component that complies with the specification, and that component
can be dropped into the component palette of any of these Java development environ-
ments. The component you write can be used again in future projects or by other
developers, who need no knowledge about the component’s implementation.

Directory SDK for Java includes a few sample JavaBeans. Although each Java
Bean does very little, each one provides a single piece of commonly used directory
functionality. The JavaBeans also encapsulate some of the implementation details of
LDAP, which means that developers can use these JavaBeans without knowing very
much about LDAP.

Invisible LDAP JavaBeans

The first set of JavaBeans we’ll look at are “invisible Beans.” These JavaBeans wrap
subsets of the SDK functionality, but they provide no GUI interface.

All these invisible JavaBeans extend the common base class
LDAPBasePropertySupport, illustrated in Figure 10-1. This class provides standard
methods for accessing SDK properties, a method for connecting to the directory, and
an event dispatcher for property change events. Property change events are the sim-
plest and probably the most common events used by JavaBeans to notify other com-
ponents of significant changes. Let’s take a look at the implementation of the
LDAPBasePropertySupport class.

Don’t Redo It,
Reuse It: LDAP
JavaBeans

267

C H A P T E R 1 0

268 Don’t Redo It, Reuse It: LDAP JavaBeans

$ OK : int = 0
$ INVALID_PARAMETER : int = 1
$ CONNECT_ERROR : int = 2
$ AUTHENTICATION_ERROR : int = 3
$ PROPERTY_NOT_FOUND : int = 4
$ AMBIGUOUS_RESULTS : int = 5
$ NO_SUCH_OBJECT : int = 6
_debug : boolean = false
_errCode : int = 0
_port : int = 389
_scope : int = LDAPConnection.SCOPE_SUB

LDAPB asePropertySupport()
getHost() : String
setHost(theHost : String) : void
getPort() : int
setPort(thePort : int) : void
getBase() : String
setBase(theBase : String) : void
getAuthDN() : String
setAuthDN(authDN : String) : void
getAuthPassword() : String
setAuthPassword(authPassword : String) : void
getUserName() : String
setUserName (name : String) : void
getUserlD() : String
setUserlD(name : String) : void
getScope() : int
setScope(scope : int) : void
getFilter() : String
setFilter(filter : String) : void
getDebug() : boolean
setDebug(on : boolean) : void
getErrorCode() : int
setErrorCode(code : int) : void
addPropertyChangeListener(listener : PropertyChangeListener) : void
removePropertyChangeListener(listener : PropertyChangeListener) : void
firePropertyChange(propName : String , oldValue : Object, newValue :

Object) : void
printDebug(s : String) : void
connect(conn : LDAPConnection, host : String, port : int) : void
setDefaultReferralCredentials(conn : LDAPConnection) : void
convertToString(aResuit : String[]) : String

LDAPBasePropertySupport
(from beans)

FIGURE 10-1. LDAPBasePropertySupport.

LDAPBasePropertySupport

One of the requirements of a JavaBean is that it must be serializable; that is, the object
must be able to be written to disk or transferred over a network and then reconsti-
tuted. In addition, the JavaBean must have a public constructor that takes no parame-
ters. These two requirements are related: a JavaBean object can be stored persistently
(which requires it to be serializable) and restored later (which requires a constructor
with no parameters). The LDAPBasePropertySupport class fulfills both of these
requirements:

public class LDAPBasePropertySupport implements Serializable {

/**

* Constructor with no parameters

*/

public LDAPBasePropertySupport() {}

Next, accessor methods are declared for the properties used to connect to
the directory and to search the directory. These properties include the host name
and port number of the LDAP server, the DN and password used for authentica-
tion, and the base DN, scope, and filter used for the search. Only the accessors for
the host name property are included in the block of code shown here; the others are
similar.

/**

* Returns the host to search at

* @return DNS name or dotted IP name of host to search at

*/

public String getHost() {

return _host;

}

/**

* Sets host string.

* @param theHost host name

*/

public void setHost(String theHost) {

_host = theHost;

}

Invisible LDAP JavaBeans 269

The invisible JavaBeans provided with the SDK use property change events to
notify other components of the results of operations. The base class provides support
for registering interest in property change events and for “firing” them:

/**

* Add a client to be notified when an authentication result is in

* @param listener a client to be notified of changes

*/

public void addPropertyChangeListener(

PropertyChangeListener listener) {

System.out.println("Adding listener " + listener);

m_propSupport.addPropertyChangeListener(listener);

}

/**

* Remove a client that had requested notification on authentication

* @param listener a client not to be notified of changes

*/

public void removePropertyChangeListener(

PropertyChangeListener listener) {

m_propSupport.removePropertyChangeListener(listener);

}

/**

* Support for bound property notification

* @param propName name of changed property

* @param oldValue previous value of property

* @param newValue new value of property

*/

public void firePropertyChange(

String propName,

Object oldValue,

Object newValue) {

if (m_propSupport == null)

m_propSupport = new PropertyChangeSupport(this);

m_propSupport.firePropertyChange(propName, oldValue, newValue);

}

The LDAPBasePropertySupport class also defines two utility methods, shown in
the block of code that follows. The printDebug method prints out debugging infor-
mation, and the convertToString method converts a String array to a single String

270 Don’t Redo It, Reuse It: LDAP JavaBeans

(with line feeds delimiting the fields in the single String). The convertToString
method is useful if you are using this class in JavaScript (through LiveConnect). You
can use convertToString to supply results as a single String (JavaScript does not
support arrays as return values). This method is not declared static, because
JavaScript in earlier browsers doesn’t handle inheritance of static methods properly.

protected void printDebug(String s) {

if (_debug)

System.out.println(s);

}

/**

* Utility method to convert a String array to a single String

* with line feeds between elements.

* @param aResult the String array to convert

* @return a String with the elements separated by line feeds

*/

public String convertToString(String[] aResult) {

String sResult = "";

if (null != aResult) {

for (int i = 0; i < aResult.length; i++) {

sResult += aResult[i] + "\n";

}

}

return sResult;

}

Finally, a method to connect to a directory is defined. It is protected, since it is to be
used by derived Beans and not by external components. The connect method, shown in
the block of code that follows, checks if the Bean is running as an applet in Netscape
Navigator, and if so, requests permission to make network connections. We discussed
the need to request permission to establish network connections in Chapter 8.

The method also sets up automatic following of referrals using the same creden-
tials that were supplied for the original connection. Referral processing will be dis-
cussed in detail in Chapter 16.

/**

* Sets up basic connection privileges for Navigator if necessary,

* and connects

* @param host host to connect to

* @param port port number

* @exception LDAPException from connect()

*/

Invisible LDAP JavaBeans 271

protected void connect(LDAPConnection conn, String host, int port)

throws LDAPException {

boolean needsPrivileges = true;

/* Running stand-alone? */

SecurityManager sec = System.getSecurityManager();

printDebug("Security manager = " + sec);

if (sec == null) {

printDebug("No security manager");

/* Not an applet; we can do what we want to */

needsPrivileges = false;

/* Cannot do instanceof on an abstract class */

} else if (sec.toString().startsWith(

"java.lang.NullSecurityManager")) {

printDebug("No security manager");

/* Not an applet; we can do what we want to */

needsPrivileges = false;

} else if (sec.toString().startsWith(

"netscape.security.AppletSecurity")) {

/* Connecting to the local host? */

try {

if (host.equalsIgnoreCase(

java.net.InetAddress.getLocalHost().getHostName()))

needsPrivileges = false;

} catch (java.net.UnknownHostException e) {

}

}

if (needsPrivileges) {

/* Running as applet. Is PrivilegeManager around? */

String mgr = "netscape.security.PrivilegeManager";

try {

Class c = Class.forName(mgr);

java.lang.reflect.Method[] m = c.getMethods();

if (m != null) {

for(int i = 0; i < m.length; i++) {

if (m[i].getName().equals(

"enablePrivilege")) {

try {

Object[] args = new Object[1];

args[0] =

new String("UniversalConnect");

m[i].invoke(null, args);

272 Don’t Redo It, Reuse It: LDAP JavaBeans

printDebug(

"UniversalConnect enabled");

} catch (Exception e) {

printDebug("Exception on invoking " +

"enablePrivilege: " +

e.toString());

break;

}

break;

}

}

}

} catch (ClassNotFoundException e) {

printDebug("no " + mgr);

}

}

conn.connect(host, port);

setDefaultReferralCredentials(conn);

}

The setDefaultReferralCredentials method, illustrated in the block of code
that follows, creates and configures an object used to handle any referrals encountered
during a search. The object holds the DN and password used to authenticate to the
original server. When the Bean is “referred” to another LDAP server, the DN and
password in the object are used to authenticate to the new server.

protected void setDefaultReferralCredentials(

LDAPConnection conn) {

final LDAPConnection m_conn = conn;

LDAPRebind rebind = new LDAPRebind() {

public LDAPRebindAuth getRebindAuthentication(

String host,

int port) {

return new LDAPRebindAuth(

m_conn.getAuthenticationDN(),

m_conn.getAuthenticationPassword());

}

};

LDAPSearchConstraints cons = conn.getSearchConstraints();

cons.setReferrals(true);

cons.setRebindProc(rebind);

}

Invisible LDAP JavaBeans 273

In the following block of code, error codes are defined for use by derived classes
as well as by clients. Clients do not need to know about the extensive list of error
codes in LDAPException.

/*

* Variables

*/

/* Error codes from search operations, etc. */

public static final int OK = 0;

public static final int INVALID_PARAMETER = 1;

public static final int CONNECT_ERROR = 2;

public static final int AUTHENTICATION_ERROR = 3;

public static final int PROPERTY_NOT_FOUND = 4;

public static final int AMBIGUOUS_RESULTS = 5;

public static final int NO_SUCH_OBJECT = 6;

Finally, variables storing the Bean properties are declared:

private boolean _debug = false;

private int _errCode = 0;

private String _host = new String("localhost");

private int _port = 389;

private int _scope = LDAPConnection.SCOPE_SUB;

private String _base = new String("");

private String _filter = new String("");

private String _authDN = new String("");

private String _authPassword = new String("");

private String _userName = new String("");

private String _userID = new String("");

transient private PropertyChangeSupport m_propSupport =

new PropertyChangeSupport(this);

LDAPSimpleAuth

Many applications, particularly server-side applications, use a directory solely to
authenticate a user (to determine if a user is who he says he is). We’ve already looked
at authenticating to the directory, starting in Chapter 6. Not much to it. So why do
we need a JavaBean to do authentication? The answer will become apparent very
soon.

LDAPSimpleAuth, illustrated in Figure 10-2, is a JavaBean for LDAP authentication.
As with all other JavaBeans, LDAPSimpleAuth is serializable and has a construc-

tor with no parameters. For convenience, it also has constructors to allow setting

274 Don’t Redo It, Reuse It: LDAP JavaBeans

some or all parameters in one shot, rather than through the methods for setting indi-
vidual properties:

public class LDAPSimpleAuth extends LDAPBasePropertySupport

implements Serializable {

/**

* Constructor with no parameters

*/

public LDAPSimpleAuth() {}

/**

* Constructor with host and port initializers

* @param theHost host string

* @param thePort port number

*/

public LDAPSimpleAuth(String theHost,

int thePort) {

setHost(theHost);

setPort(thePort);

}

/**

* Constructor with all required authentication parameters

* @param theHost host string

* @param thePort port number

Invisible LDAP JavaBeans 275

LDAPSimpleAuth()
LDAPSimpleAuth(theHost : String, thePort : int)
LDAPSimpleAuth(theHost : String, thePort : int, dn : String,

password : String)
notifyResult(newResult : String) : void
authenticate() : String
authenticate(dn : String, password : String) : String
authenticate(x : ActionEvent) : void
main(args[] : String) : void

LDAPSimpleAuth
(from beans)

FIGURE 10-2. LDAPSimpleAuth.

* @param dn fully qualified distinguished name to authenticate

* @param password password for authenticating the DN

*/

public LDAPSimpleAuth(String theHost,

int thePort,

String dn,

String password) {

setHost(theHost);

setPort(thePort);

setAuthDN(dn);

setAuthPassword(password);

}

The only public method (aside from a main method, which you can use to verify
that the JavaBean works) is authenticate, which has two signatures. One signature
has no parameters and relies on the properties you set by using the accessor methods.
The other signature allows you to pass in the DN and the password you want to use
for authentication. To facilitate use with JavaScript in a browser or on a Web server,
authenticate returns a String. The authenticate method, shown in the following
block of code, also notifies clients of results by firing property change events.

/**

* Connect to LDAP server using parameters specified in

* constructor and/or by setting properties, and attempt to

* authenticate.

* @return "Y" on successful authentication, "N" otherwise

*/

public String authenticate() {

LDAPConnection m_ldc = null;

String result = "N";

try {

m_ldc = new LDAPConnection();

System.out.println("Connecting to " + getHost() +

" " + getPort());

connect(m_ldc, getHost(), getPort());

} catch (Exception e) {

System.out.println("Failed to connect to " + getHost() +

": " + e.toString());

}

if (m_ldc.isConnected()) {

System.out.println("Authenticating " + getAuthDN());

try {

m_ldc.authenticate(getAuthDN(), getAuthPassword());

276 Don’t Redo It, Reuse It: LDAP JavaBeans

result = "Y";

} catch (Exception e) {

System.out.println("Failed to authenticate to " +

getHost() + ": " + e.toString());

}

}

try {

if ((m_ldc != null) && m_ldc.isConnected())

m_ldc.disconnect();

} catch (Exception e) {

}

notifyResult(result);

return result;

}

/**

* Connect to LDAP server using parameters specified in

* constructor and/or by setting properties, and attempt to

* authenticate.

* @param dn fully qualified distinguished name to authenticate

* @param password password for authenticating the DN

* @return "Y" on successful authentication, "N" otherwise

*/

public String authenticate(String dn,

String password) {

setAuthDN(dn);

setAuthPassword(password);

return authenticate();

}

The String return value makes it easy to use this Bean in JavaScript. In the fol-
lowing sample section of a Web page, the parameters are taken from HTML text
fields in an HTML form called “input,” and the result is displayed in a JavaScript alert
dialog box.

<SCRIPT LANGUAGE="JavaScript">

function checkAuthentication() {

auth = new Packages.netscape.ldap.beans.LDAPSimpleAuth();

auth.setHost(document.input.host.value);

auth.setPort(parseInt(document.input.port.value));

auth.setAuthDN(document.input.dn.value);

Invisible LDAP JavaBeans 277

auth.setAuthPassword(document.input.password.value);

// Must request rights to do network connections

netscape.security.PrivilegeManager.enablePrivilege("UniversalConnect");

// And for property reads, to get LDAP error strings

netscape.security.PrivilegeManager.enablePrivilege(

"UniversalPropertyRead");

result = auth.authenticate();

if (result == "N")

msg = "Incorrect password";

else

msg = "Successful login";

alert(msg);

}

</SCRIPT>

Clients that prefer to listen for a property change event rather than checking the
return value of authenticate are notified through notifyResult:

private void notifyResult(String newResult) {

firePropertyChange("result", result, newResult);

result = newResult;

}

LDAPGetEntries

When searching for a user entry in a directory, a typical user might enter part of the
name or ID of the desired user and expect to select from a list of matching users. After
selecting a name from the list, the user might then expect to see some properties of
that entry. The LDAPGetEntries JavaBean (Figure 10-3) helps with the first part. It
will accept part of a full name (cn), part of a user ID (uid), or both; search for all
matching entries; and return a list of DNs. The full name and/or user ID may contain
wild cards—for example, “john*” or “*ramer*.”

As with LDAPSimpleAuth, LDAPGetEntries has a constructor with no parame-
ters (for deserialization), as well as constructors to allow setting some or all parame-
ters at once, rather than through the methods for setting individual properties:

public class LDAPGetEntries extends LDAPBasePropertySupport

implements Serializable {

/**

* Constructor with no parameters

*/

278 Don’t Redo It, Reuse It: LDAP JavaBeans

public LDAPGetEntries() {

super();

}

/**

* Constructor with host, port, and base initializers

* @param theHost host string

* @param thePort port number

* @param theBase directory base string

*/

public LDAPGetEntries(String theHost, int thePort, String theBase) {

setHost(theHost);

setPort(thePort);

setBase(theBase);

}

/**

* Constructor with host, port, base, and scope initializers

* @param theHost host string

* @param thePort port number

* @param theBase directory base string

Invisible LDAP JavaBeans 279

LDAPGetEntries()
LDAPGetEntries(theHost : String, thePort : int, theBase : String)
LDAPGetEntries(theHost : String, thePort : int, theBase : String,

theScope : int)
notifyResult(error : String) : void
notifyResult(newResult : String[]) : void
getAttribute90 : String
setAttribute(attr : String) : void
setResultString(sNewValue : String) : void
getResultString() : String
getEntries(host : String, port : int, base : String, scope : int,

filter : String) : String[]
getEntries(host : String, port : int, userid : String, userName :

String) : String[]
getEntries(x : ActionEvent) : void
getEntries() : String[]
main(args[] : String) : void

LDAPGetEntries
(from beans)

FIGURE 10-3. LDAPGetEntries.

* @param theScope one of LDAPConnection.SCOPE_BASE,

* LDAPConnection.SCOPE_SUB, LDAPConnection.SCOPE_ONE

*/

public LDAPGetEntries(String theHost,

int thePort,

String theBase,

int theScope) {

setHost(theHost);

setPort(thePort);

setBase(theBase);

setScope(theScope);

}

As with LDAPSimpleAuth, clients can be notified when results are ready with a
PropertyChangeEvent (delivered by firePropertyChange):

private void notifyResult(String error) {

firePropertyChange("error", _errorMsg, error);

_errorMsg = error;

}

private void notifyResult(String[] newResult) {

String sNewResult = convertToStrings(newResult);

firePropertyChange("result", result, newResult);

_sResult = sNewResult;

result = newResult;

}

There are accessors for the results:

public void setResultString(String sNewValue) {

_sResult = sNewValue;

}

public String getResultString() {

return _sResult;

}

The most important method in this JavaBean is getEntries, shown in the fol-
lowing block of code. This is the method called by a client to begin the search. Param-
eters can be supplied with the method, or they can be assumed to be already provided
with the constructor or using the accessors.

280 Don’t Redo It, Reuse It: LDAP JavaBeans

/**

* Searches and returns values for a specified attribute

* @param host host string

* @param port port number

* @param base directory base string

* @param scope one of LDAPConnection.SCOPE_BASE,

* LDAPConnection.SCOPE_SUB, LDAPConnection.SCOPE_ONE

* @param filter search filter

* @param attribute name of property to return values for

* @return array of values for the property

*/

public String[] getEntries(String host,

int port,

String base,

int scope,

String filter) {

setHost(host);

setPort(port);

setBase(base);

setScope(scope);

setFilter(filter);

return getEntries();

}

/**

* Searches and returns values for a specified attribute

* @param host host string

* @param port port number

* @param base directory base string

* @param scope one of LDAPConnection.SCOPE_BASE,

* LDAPConnection.SCOPE_SUB, LDAPConnection.SCOPE_ONE

* @param userName the user name

* @param userid the user ID

* @return array of DNs

*/

public String[] getEntries(String host,

int port,

String base,

int scope,

String userid,

String userName) {

setHost(host);

setPort(port);

Invisible LDAP JavaBeans 281

setBase(base);

setScope(scope);

if (userName == null)

userName = new String("");

setUserName(userName);

if (userid == null)

userid = new String("");

setUserID(userid);

return getEntries();

}

// Added this method in order to get exposed in BDK

public void getEntries(ActionEvent x) {

getEntries();

}

/**

* Searches and returns values of a previously registered property,

* using previously set parameters

* @return array of values for the property

*/

public String[] getEntries() {

boolean invalid = false;

if ((getUserName().length() < 1) && (getUserID().length() < 1) &&

(getFilter().length() < 1)) {

printDebug("No user name or user ID");

invalid = true;

} else if ((getHost().length() < 1) || (getBase().length() < 1)) {

printDebug("Invalid host name or search base");

invalid = true;

}

if (invalid) {

setErrorCode(INVALID_PARAMETER);

notifyResult((String)null);

return null;

}

if (getFilter().length() < 1) {

String filter = new String("");

if ((getUserName().length() > 1) && (getUserID().length() > 1)) {

filter = "(|(cn="+getUserName()+")(uid="+getUserID()+"))";

} else if (getUserName().length() > 1) {

filter = "cn="+getUserName();

} else if (getUserID().length() > 1) {

282 Don’t Redo It, Reuse It: LDAP JavaBeans

filter = "uid="+getUserID();

}

setFilter(filter);

}

String[] res = null;

LDAPConnection m_ldc = new LDAPConnection();

try {

try {

printDebug("Connecting to " + getHost() +

" " + getPort());

connect(m_ldc, getHost(), getPort());

} catch (Exception e) {

printDebug("Failed to connect to " + getHost() + ": " +

e.toString());

setErrorCode(CONNECT_ERROR);

notifyResult((String)null);

m_ldc = null;

throw(new Exception());

}

// Authenticate?

if ((!getAuthDN().equals("")) &&

(!getAuthPassword().equals(""))) {

printDebug("Authenticating " + getAuthDN());

try {

m_ldc.authenticate(getAuthDN(), getAuthPassword());

} catch (Exception e) {

printDebug("Failed to authenticate: " + e.toString());

setErrorCode(AUTHENTICATION_ERROR);

notifyResult((String)null);

throw(new Exception());

}

}

// Search

try {

printDebug("Searching " + getBase() +

" for " + getFilter() + ", scope = " + getScope());

String[] attrs = null;

LDAPSearchResults results = m_ldc.search(getBase(),

getScope(),

getFilter(),

Invisible LDAP JavaBeans 283

attrs,

false);

// Create a vector for the results

Vector v = new Vector();

LDAPEntry entry = null;

while (results.hasMoreElements()) {

try {

entry = (LDAPEntry)results.next();

} catch (LDAPReferralException e) {

if (getDebug()) {

notifyResult("Referral URLs: ");

LDAPUrl refUrls[] = e.getURLs();

for (int i = 0; i < refUrls.length; i++)

notifyResult(refUrls[i].getUrl());

}

continue;

} catch (LDAPException e) {

if (getDebug())

notifyResult(e.toString());

continue;

}

String dn = entry.getDN();

v.addElement(dn);

printDebug("... " + dn);

}

// Pull out the DNs and create a string array

if (v.size() > 0) {

res = new String[v.size()];

for(int i = 0; i < v.size(); i++)

res[i] = (String)v.elementAt(i);

setErrorCode(OK);

} else {

printDebug("No entries found for " + getFilter());

setErrorCode(PROPERTY_NOT_FOUND);

}

} catch (Exception e) {

printDebug("Failed to search for " + getFilter() + ": " +

e.toString());

setErrorCode(PROPERTY_NOT_FOUND);

}

} catch (Exception e) {

}

284 Don’t Redo It, Reuse It: LDAP JavaBeans

try {

if ((m_ldc != null) && m_ldc.isConnected())

m_ldc.disconnect();

} catch (Exception e) {

}

notifyResult(res);

return res;

}

You can verify the functionality of the Bean from the command line as follows:

java netscape.ldap.beans.LDAPGetEntries localhost 389 "o=airius.com" sub

"cn=*"

ou=Directory Administrators, o=mcom.com

cn=Accounting Managers,ou=groups,o=mcom.com

cn=HR Managers,ou=groups,o=mcom.com

cn=QA Managers,ou=groups,o=mcom.com

cn=PD Managers,ou=groups,o=mcom.com

The following is a simple example of using the LDAPGetEntries Bean in a Web
page.

<FORM NAME=input>

<TABLE WIDTH="300" >

<TR>

<TD>Host:</TD>

<TD><INPUT TYPE=text NAME="host" VALUE="manta" SIZE=40></TD>

</TR>

<TR>

<TD>Port:</TD>

<TD><INPUT TYPE=text NAME="port" VALUE=389 SIZE=40></TD>

</TR>

<TR>

<TD>Directory base:</TD>

<TD><INPUT TYPE=text NAME="base" VALUE="o=Airius.com" SIZE=40></TD>

</TR>

<TR>

<TD>Filter:</TD>

<TD><INPUT TYPE=text NAME="filter" VALUE="objectclass=groupOfUniqueNames"

SIZE=40></TD>

</TR>

Invisible LDAP JavaBeans 285

</TABLE>

<P><INPUT TYPE=button VALUE="Get entries"

onClick="getEntries()" ARCHIVE="LDAPGetEntries.jar" ID="2">

</FORM>

<P><FORM NAME=output>

<TEXTAREA NAME="results" ROWS=10 COLS=70></TEXTAREA>

</FORM>

<SCRIPT LANGUAGE="JavaScript" ARCHIVE="LDAPGetEntries.jar" ID="3">

function showError(err) {

var pkg = netscape.ldap.beans.LDAPGetEntries;

if (err == pkg.INVALID_PARAMETER)

errString = "Invalid parameter";

else if (err == pkg.CONNECT_ERROR)

errString = "Unable to connect to server";

else if (err == pkg.AUTHENTICATION_ERROR)

errString = "Unable to authenticate to server";

else if (err == pkg.PROPERTY_NOT_FOUND)

errString = "Entry or property not found";

else

errString = "Unexpected error " + err;

alert("Error fetching entries: " + errString);

}

var getter;

function getEntries() {

if (document.input.filter.value.length < 1) {

alert("Must enter a value for Filter");

}

var getter = new netscape.ldap.beans.LDAPGetEntries();

// Get parameters from form fields

getter.setHost(document.input.host.value);

getter.setPort(parseInt(document.input.port.value));

getter.setBase(document.input.base.value);

getter.setFilter(document.input.filter.value);

// Do the search

netscape.security.PrivilegeManager.enablePrivilege("UniversalConnect");

values = getter.getEntries();

// Display the results, converted to a single string with line feeds

if (values != null) {

document.output.results.value=getter.convertToString(values);

286 Don’t Redo It, Reuse It: LDAP JavaBeans

} else {

var err = getter.getErrorCode();

showError(err);

}

}

</SCRIPT>

A search for “objectclass=person” in the sample Airius database produces
results as in Figure 10-4.

Directory-Based Authentication in JavaScript

LDAPGetEntries and LDAPSimpleAuth can be hooked up to provide simple authenti-
cation using a user ID and password. Recall that LDAPSimpleAuth requires a full DN,
which users generally do not know (or at least they find difficult to type in). We’ll use

Invisible LDAP JavaBeans 287

FIGURE 10-4. LDAPGetEntries in a simple Web page.

LDAPGetEntries to find the DN corresponding to the user ID entered by a user, and
then LDAPSimpleAuth to validate the password supplied by the user for the DN.

The HTML page login.html demonstrates use of the two Beans to validate a
user. The validated DN is available in the variable userDN:

<SCRIPT>

var userDN = "";

function doLogin() {

// Create an instance of the LDAPGetEntries Bean

var getter = new netscape.ldap.beans.LDAPGetEntries();

// Get parameters from form fields

getter.setHost(document.input.host.value);

getter.setPort(parseInt(document.input.port.value));

getter.setBase(document.input.base.value);

getter.setFilter("uid="+document.input.userid.value);

// Must request rights to do network connections

netscape.security.PrivilegeManager.enablePrivilege("UniversalConnect");

// And for property reads, to get LDAP error strings

netscape.security.PrivilegeManager.enablePrivilege(

"UniversalPropertyRead");

// Do the search

values = getter.getEntries();

var result;

// No matching entries?

if ((values == null) || (values.length < 1)) {

result = getter.getErrorCode();

if (result == 0) {

result = getter.NO_SUCH_OBJECT;

}

// Too many matching entries?

} else if (values.length > 1) {

result = TOO_MANY_MATCHES;

// Good - just one match

} else {

userDN = values[0];

auth = new Packages.netscape.ldap.beans.LDAPSimpleAuth();

auth.setHost(document.input.host.value);

auth.setPort(parseInt(document.input.port.value));

auth.setAuthDN(userDN);

auth.setAuthPassword(document.input.password.value);

result = auth.authenticate();

}

showResult(result);

}

</SCRIPT>

288 Don’t Redo It, Reuse It: LDAP JavaBeans

Using PropertyChangeEventNotifications

So far in this chapter our examples have used the LDAP JavaBeans in a synchronous
manner—calling a method and receiving the results as the return value of the method.
However, JavaBeans are often connected to each other and to a client through event
notification, which can be implemented very simply. In the following TestBean exam-
ple, an anonymous object is created inline. This object is set up to be notified when
results are available. When the property change event fires, the object prints out the
results.

public class TestBean {

public static void main(String[] args) {

// Create an instance of the Bean

LDAPGetEntries getter = new LDAPGetEntries();

// Create an object that listens for results and prints

// them out

getter.addPropertyChangeListener(new PropertyChangeListener() {

public void propertyChange(PropertyChangeEvent evt) {

String[] results = (String[])evt.getNewValue();

for(int i = 0; i < results.length; i++) {

System.out.println(results[i]);

}

}

});

// Do the search

getter.getEntries(HOST, PORT, BASE, SCOPE, FILTER);

}

private static final String HOST = "localhost";

private static final int PORT = 389;

private static final String BASE = "o=airius.com";

private static final int SCOPE = LDAPConnection.SCOPE_SUB;

private static final String FILTER = "objectclass=groupofuniquenames";

}

A more useful and common scenario for JavaBeans is a visual development envi-
ronment, in which components are combined and connected with a layout tool and
no explicit programming is required. TestBeanApplet is an applet that contains only
a TextArea. It has methods to set the font and background and foreground colors
either through property accessors or through PARAM declarations in the APPLET tag,
but these methods are omitted here for brevity.

The page TestBeanApplet.html demonstrates connecting the LDAPGetEntries
JavaBean with a TestBeanApplet object through property change events. You can use

Invisible LDAP JavaBeans 289

a visual development environment like Visual JavaScript to lay out, connect, and con-
figure the two components without having to write any code.

TestBeanApplet.java is very simple, if we set aside for now the parsing and
processing of color and font specifications:

public class TestBeanApplet extends Applet

implements PropertyChangeListener {

public void init() {

super.init();

setLayout(null);

addNotify();

int w = Integer.parseInt(getParameter("width"));

int h = Integer.parseInt(getParameter("height"));

resize(w+10,h+10);

textField1 = new java.awt.TextArea(4, 40);

textField1.setBounds(0,0,w,h);

parseParameters();

add(textField1);

}

private java.awt.TextArea textField1;

}

TestBeanApplet.html, shown below, is almost the same as
LDAPGetEntries.html. Instead of a text area for displaying results, a
TestBeanApplet is placed on the page and added as a PropertyChangeListener
to the LDAPGetEntries JavaBean.

<APPLET code="TestBeanApplet.class" NAME="TestBeanApplet"

MAYSCRIPT="true" width=450 height=200>

</APPLET>

var getter;

function getEntries() {

// Get parameters from form fields

getter.setHost(document.input.host.value);

getter.setPort(parseInt(document.input.port.value));

getter.setBase(document.input.base.value);

getter.setFilter(document.input.filter.value);

getter.setAttribute("cn");

// Must request rights to do network connections

netscape.security.PrivilegeManager.enablePrivilege(

"UniversalConnect");

// Do the search

values = getter.getEntries();

290 Don’t Redo It, Reuse It: LDAP JavaBeans

if (values == null) {

var err = getter.getErrorCode();

showError(err);

}

}

// Instantiate the Bean and hook it up to the applet

function doWire() {

// Create an instance of the Bean

getter = new netscape.ldap.beans.LDAPGetEntries();

// Hook it up to the applet

getter.addPropertyChangeListener(document.TestBeanApplet);

// Set some interesting colors and font for the applet

document.TestBeanApplet.setBackgroundColor("yellow");

document.TestBeanApplet.setForegroundColor("blue");

document.TestBeanApplet.setTextFont("Helvetica-bolditalic-20");

}

window.onload=doWire()

The Java TextArea can be easily customized with colors and fonts, as in Figure
10-5.

Invisible LDAP JavaBeans 291

FIGURE 10-5. LDAPGetEntries with JavaBean text area.

Graphical LDAP JavaBeans

Now that we’ve investigated typical properties of an LDAP JavaBean, we can take a
look at graphical components that can be plugged into a graphical user interface (GUI).

A Directory Browser

A component that displays the contents of a directory as a tree can be useful in many
ways. It could be used simply to explore the directory. It could be invoked as a pop-up
in places in an application where a user must enter a DN. Later in this chapter we’ll
hook it up to a table component to make a simple directory explorer, similar to Win-
dows Explorer.

To simplify use of the Bean in a JFC (Java Foundation Classes) environment,
we’ll have it extend javax.swing.JPanel.

The TreePanel Bean (Figure 10-6) uses several utility classes, which are pre-
sented in Appendix C:

• Debug for conditional printout of error statements

• DateUtil for converting LDAP date strings to a localized date format

292 Don’t Redo It, Reuse It: LDAP JavaBeans

«Interface»
IDirModel

«Interface»
IDirNode

DirModel DirNodeEvent

DirNode

TreePanel

TreePanelCellRenderer

RootDirNode

1..1 0..n

1..1

1..1

1..1

FIGURE 10-6. TreePanel and supporting classes.

• DirUtil to simplify connecting to a server (optionally using SSL)

• ImageUtil for remote or local loading of image files

• ResourceSet for reading properties from properties files

• SortUtil for sorting

TreePanel is supplied with data from an object that implements IDirModel. The
level of indirection provided by the IDirModel interface allows us to substitute other
implementations in the future, and it clarifies the interfaces used.

IDirModel

IDirModel (Figure 10-7) extends TreeModel, which is the basic JFC model interface
for supporting a JTree. It adds methods for getting and setting various additional
properties related to how the directory is to be searched.

public interface IDirModel extends javax.swing.tree.TreeModel {

/**

* Get a connection to the directory instance

*

* @return a connection to the server

*/

public LDAPConnection getLDAPConnection();

Graphical LDAP JavaBeans 293

getLDAPConnection() : LDAPConnection
setLDAPConnection(Idc : LDAPConnection) : void
getSchema() : LDAPSchema
setSchema(schema : LDAPSchema) : void
getReferralsEnabled() : boolean
setReferralsEnabled(on : boolean) : void
getAllowsLeafNodes() : boolean
setAllowsLeafNodes(allow : boolean) : void
getChildFilter() : String
setChildFilter(filter : String) : void
getShowsPrivateSuffixes() : boolean
setShowsPrivateSuffixes(showPrivate : boolean) : void
getcontainers() : Hashtable
fireTreeStructureChanged(node : IDirNode) : void

«Interface»
IDirModel

FIGURE 10-7. IDirModel.

/**

* Sets the server connection used to populate the tree

*

* @param ldc the server connection used to populate the tree

*/

public void setLDAPConnection(LDAPConnection ldc);

/**

* Get the schema of the directory instance

*

* @return a reference to a schema object

*/

public LDAPSchema getSchema();

/**

* Sets a reference to the schema of the directoryinstance

*

* @param schema a reference to a schema object

*/

public void setSchema(LDAPSchema schema);

/**

* Get the parameter that determines if the

* ManagedSAIT control is sent with each search. If the

* control is sent, referral entries are returned as

* normal entries and not followed.

*

* @return true if referrals are to be followed

*/

public boolean getReferralsEnabled();

/**

* Set a parameter for future searches that determines if the

* ManagedSAIT control is sent with each search. If referrals are

* disabled, the control is sent and you will receive the referring

* entry back.

*

* @param on true (the default) if referrals are to be followed

*/

public void setReferralsEnabled(boolean on);

/**

* Reports if the model is currently configured to show leaf (as well as

* container) nodes

294 Don’t Redo It, Reuse It: LDAP JavaBeans

*

* @return true if the model is currently configured to show leaf

* (as well as container) nodes

*/

public boolean getAllowsLeafNodes();

/**

* Determines if the model is to show leaf (as well as container) nodes

*

* @param allow true if the model is to show leaf (as well as container)

* nodes

*/

public void setAllowsLeafNodes(boolean allow);

/**

* Used between DirNode and DirModel, to manage the search filter used to

* find children of a node

*

* @return the search filter to be used to find direct children

*/

public String getChildFilter();

/**

* Set the search filter used to find children of a node

*

* @param filter the search filter to be used to find direct children

*/

public void setChildFilter(String filter);

/**

* Report if the model will show private suffixes.

* If true (the default), private suffixes will appear.

*

* @return true if private suffixes are to be displayed in the tree

*/

public boolean getShowsPrivateSuffixes();

/**

* Determines if the model will supply node objects for tree nodes.

* If false (the default), only container nodes will appear.

*

* @param allow true if leaf nodes are to be displayed in the tree

*/

public void setShowsPrivateSuffixes(boolean showPrivate);

Graphical LDAP JavaBeans 295

/**

* Used between DirNode and DirModel, to manage the list of object classes

* that are to be considered containers

*

* @return a hash table containing object classes to be considered

containers

*/

public Hashtable getContainers();

/**

* Informs the tree that a particular node’s structure

* has changed and its view needs to be updated

*

* @param node the node that has changed

**/

public void fireTreeStructureChanged(IDirNode node);

}

TreePanel

TreePanel (Figure 10-8) catches and handles mouse, key, and tree selection events on
the JTree it manages:

public class TreePanel extends JPanel

implements TreeSelectionListener,

MouseListener,

KeyListener,

Serializable {

TreePanel uses a special node renderer—TreePanelCellRenderer—to work
around bugs in the JFC default implementation and to provide better selection indica-
tion. There is a default constructor as well, for deserialization:

/**

* Construct tree using the data model specified

*

* @param model a directory model

*/

public TreePanel(IDirModel model) {

super();

_treeRenderer = new TreePanelCellRenderer();

_model = model;

setLayout(new BorderLayout());

setBorder(new EmptyBorder(0, 0, 0, 0));

296 Don’t Redo It, Reuse It: LDAP JavaBeans

Component tree = createTree(model);

add(tree);

}

/**

* Default constructor for deserialization

*/

public TreePanel() {

this(null);

}

The JTree is created and configured:

/**

* Returns a Component that contains the tree

*

Graphical LDAP JavaBeans 297

TreePanel(model : IDirModel)
TreePanel()
createTree(model : TreeModel) : Component
getModel() : IDirModel
setModel(model : IDirModel) : void
addDirNodeListener(I : IDirNodeListener) : void
removeDirNodeListener(I : IDirNodeListener) : void
select(nodes : IDirNode[]) : void
run(nodes : IDirNode[], param : String) : void
fireSelectionChanged(nodes : IDirNode[]) : void
fireActionInvoked(nodes : IDirNode[], id : int, param : String) : void
valueChanged(ev : TreeSelectionEvent) : void
mouseClicked(e : MouseEvent) : void
mousePressed(e : MouseEvent) : void
mouseEntered(e : MouseEvent) : void
mouseExited(e : MouseEvent) : void
mouseReleased(e : MouseEvent) : void
keyTyped(e : KeyEvent) : void
keyPressed(e : KeyEvent) : void
keyReleased(e : KeyEvent) : void
getSelection(): IDirNode[]
setSelectedNode(node : IDirNode) : void
main(args : String[]) : void

TreePanel

FIGURE 10-8. TreePanel.

* @return a Component that contains the tree

*/

protected Component createTree(TreeModel model) {

_tree = new JTree(model);

// Lines between nodes, as in Windows

_tree.putClientProperty("JTree.lineStyle", "Angled");

// For now, single selection only

_tree.getSelectionModel().setSelectionMode(

TreeSelectionModel.SINGLE_TREE_SELECTION);

_tree.addFocusListener(new FocusListener() {

// This causes ALL tree nodes to repaint, which

// is needed to change colors for selected tree nodes

public void focusGained(FocusEvent e) {

JTree tree = (JTree)e.getSource();

tree.validate();

tree.repaint();

}

public void focusLost(FocusEvent e) {

JTree tree = (JTree)e.getSource();

tree.validate();

tree.repaint();

}

});

// Special cell renderer

_tree.setCellRenderer(_treeRenderer);

// Catch all events

_tree.addTreeSelectionListener(this);

_tree.addMouseListener(this);

_tree.addKeyListener(this);

_treePanel = new JScrollPane();

_treePanel.getViewport().add(_tree);

_treePanel.setBorder(new BevelBorder(BevelBorder.LOWERED,

UIManager.getColor("controlHighlight"),

UIManager.getColor("control"),

UIManager.getColor("controlDkShadow"),

UIManager.getColor("controlShadow")));

_treePanel.setPreferredSize(new Dimension(200, 200));

_treePanel.setMinimumSize(new Dimension(1, 1));

return _treePanel;

}

In some cases a client will want to access the model directly:

298 Don’t Redo It, Reuse It: LDAP JavaBeans

/**

* Return tree model

*

* @return the tree model

*/

public IDirModel getModel() {

return _model;

}

/**

* Set the model

*

* @param model the model

*/

public void setModel(IDirModel model) {

_model = model;

}

TreePanel dispatches events to objects implementing the IDirNodeListener
interface that have registered an interest:

/**

* Adds a listener that is interested in receiving

DirNodeListener events

*

* @param l an object interested in receiving DirNodeListener

* events

*/

public void addDirNodeListener(IDirNodeListener l) {

_listenerList.add(IDirNodeListener.class, l);

}

/**

* Removes a listener that is interested in receiving

* DirNodeListener events

*

* @param l an object interested in receiving DirNodeListener

* events

*/

public void removeDirNodeListener(IDirNodeListener l) {

_listenerList.remove(IDirNodeListener.class, l);

}

Graphical LDAP JavaBeans 299

/**

* Dispatch selection events to listeners

*

* @param nodes currently selected nodes

*/

protected void select(IDirNode[] nodes) {

fireSelectionChanged(nodes);

}

/**

* Dispatch "run" event to listeners

*

* @param nodes currently selected nodes

* @param param optional additional event info

*/

protected void run(IDirNode[] nodes, String param) {

fireActionInvoked(nodes, DirNodeEvent.RUN, param);

}

/**

* Dispatch selection events to listeners, using the

* EventListenerList

*

* @param nodes currently selected nodes

*/

protected void fireSelectionChanged(IDirNode[] nodes) {

// Guaranteed to return a non-null array

Object[] listeners = _listenerList.getListenerList();

// Process the listeners last to first, notifying

// those that are interested in this event

for (int i = listeners.length - 2; i >= 0; i -= 2) {

if (listeners[i] == IDirNodeListener.class) {

IDirNodeListener l = (IDirNodeListener)listeners[i + 1];

l.selectionChanged(nodes);

}

}

}

/**

* Dispatch events to listeners, using the

* EventListenerList

*

* @param nodes currently selected nodes

300 Don’t Redo It, Reuse It: LDAP JavaBeans

* @param id identifier of the type of event

* @param param optional additional event info

*/

protected void fireActionInvoked(IDirNode[] nodes,

int id,

String param) {

// Guaranteed to return a non-null array

Object[] listeners = _listenerList.getListenerList();

DirNodeEvent e = null;

// Process the listeners last to first, notifying

// those that are interested in this event

for (int i = listeners.length - 2; i >= 0; i -= 2) {

if (listeners[i] == IDirNodeListener.class) {

// Lazily create the event:

if (e == null)

e = new DirNodeEvent(nodes, id, param);

IDirNodeListener l = (IDirNodeListener)listeners[i + 1];

l.actionInvoked(e);

}

}

}

Then we have the implementations of the mouse, key, and tree selection inter-
faces. On tree selection events, clients of this object are notified of selection events. On
mouse events with double-click or on key events in which the Enter key is pressed,
clients are notified of a RUN event:

/**

* Implements TreeSelectionListener. Called when an object is selected

* in the tree.

*

* @param ev event provided by JTree

*/

public void valueChanged(TreeSelectionEvent ev) {

Debug.println(9, "Tree.valueChanged: " +

ev.getPath().getLastPathComponent());

IDirNode[] selection = getSelection();

if (selection != null) {

Debug.println(9, "Tree.valueChanged: selection = " +

selection[0]);

select(selection);

}

}

Graphical LDAP JavaBeans 301

/**

* Implements MouseListener. Called when a mouse button is pressed

* and released in the tree.

*

* @param e mouse event

*/

public void mouseClicked(MouseEvent e) {

IDirNode[] selection = getSelection();

if (selection != null) {

if (e.getClickCount() == 2) { // double click

run(selection, "");

}

}

}

/**

* Implements MouseListener. Called when a mouse button is pressed

* in the tree.

*

* @param e mouse event

*/

public void mousePressed(MouseEvent e) {

}

/**

* Implements MouseListener

*

* @param e mouse event

*/

public void mouseEntered(MouseEvent e) {

}

/**

* Implements MouseListener

*

* @param e mouse event

*/

public void mouseExited(MouseEvent e) {

}

/**

* Implements MouseListener. Called when a mouse button is released

* in the tree.

*

302 Don’t Redo It, Reuse It: LDAP JavaBeans

* @param e mouse event

*/

public void mouseReleased(MouseEvent e) {

}

/**

* Implements KeyListener

*

* @param e key event

*/

public void keyTyped(KeyEvent e) {

}

/**

* Implements KeyListener. Called when a key is pressed.

*

* @param e key event

*/

public void keyPressed(KeyEvent e) {

if (e.getKeyCode() == KeyEvent.VK_ENTER) {

IDirNode[] selection = getSelection();

if (selection != null) {

run(selection, "");

}

}

}

/**

* Implements KeyListener. Called when a key is released.

*

* @param e key event

*/

public void keyReleased(KeyEvent e) {

}

Finally, there are two utility methods—getSelection and setSelectedNode—
that other components can use to force selection of a particular node or to find out
which nodes are selected at any time:

/**

* Returns array of selected nodes

*

* @param return array of selected nodes

Graphical LDAP JavaBeans 303

*/

public IDirNode[] getSelection() {

IDirNode[] selection = null;

TreePath path[] = _tree.getSelectionPaths();

if ((path != null) && (path.length > 0)) {

selection = new IDirNode[path.length];

for (int index = 0; index < path.length; index++) {

selection[index] =

(IDirNode)path[index].getLastPathComponent();

}

}

return selection;

}

/**

* Make a node selected and visible

*

* @param node node to make visible

*/

public void setSelectedNode(IDirNode node) {

if (node != null) {

TreePath path =

new TreePath(

((DefaultMutableTreeNode)node).getPath());

_tree.expandPath(path);

_tree.makeVisible(path);

_tree.scrollPathToVisible(path);

_tree.repaint();

_tree.setSelectionPath(path);

}

}

The member variables of TreePanel are declared as follows:

protected IDirModel _model;

protected JTree _tree = null;

protected TreeCellRenderer _treeRenderer;

protected JScrollPane _treePanel;

// Use an EventListenerList to manage different types of

// listeners

protected EventListenerList _listenerList =

new EventListenerList();

304 Don’t Redo It, Reuse It: LDAP JavaBeans

DirModel

DirModel (Figure 10-9) implements the IDirModel interface to provide data for the
JTree inside TreePanel. It also implements IDirContentListener so that it can be
notified if the directory has changed and the model must be reinitialized.

Graphical LDAP JavaBeans 305

_followReferrals : boolean = true
_allowLeafNodes : boolean = false
_showPrivateSuffixes : boolean = true

DirModel()
DirModel(Idc : LDAPConnection)
DirModel(root : Object , Idc : LDAPConnection)
initializeChildFilter() : String
getAllowsLeafNodes() : boolean
setAllowsLeafNodes(allow : boolean) : void
getChildFilter() : String
setChildFilter(filter : String) : void
initialize(root : Object) : void
getChild(node : Object, index : ins) : Object
getChildCount(node : Object) : int
getindexOfChild(parent : Object, child : Object) : int
addTreeModelListener(I : TreeModelListener) : void
removeTreeModelListener(I : TreeModelListener) : void
fireTreeNodeChanged(node : DirNode) : void
fireTreeStructureChanged(node : IDirNode) : void
valueForPathChanged(path : TreePath, newValue : Object) : void
isLeaf(node : Object) : boolean
contentChanged() : void
repaintObject(node : IDirNode) : void
newTree() : void
refreshNode(node : IDirNode) : void
refreshTree() : void
getLDAPConnection() : LDAPConnection
setLDAPConnection(Idc : LDAPConnection) : void
getRoot() : Object
setRoot(root : Object) : void
getReferralsEnabled() : boolean
setReferralsEnabled(on : boolean) : void
getSchema() : LDAPSchema
setSchema(schema : LDAPSchema) : void
getShowsPrivateSuffixes() : boolean
setShowsPrivateSuffixes(showPrivate : boolean) : void
initContainerNames() : Hashtable
addContainerName(name : String) : void
getContainers() : Hashtable

DirModel

FIGURE 10-9. DirModel.

public class DirModel implements IDirModel,

IDirContentListener,

Serializable {

/**

* Default constructor for deserialization

*/

public DirModel() {

setChildFilter(initializeChildFilter());

}

/**

* Constructor of the model that doesn’t populate the tree. You must

* call initialize() to populate it.

*

* @param ldc connection to LDAP server

*/

public DirModel(LDAPConnection ldc) {

this();

setLDAPConnection(ldc);

}

/**

* Constructor of the model with the root object passed in.

* Suffix nodes are retrieved and added to the tree.

*

* @param root root object

* @param ldc connection to LDAP server

*/

public DirModel(Object root, LDAPConnection ldc) {

this(ldc);

initialize(root);

}

The child filter is the search filter used to find children of a node. It is initialized
to search for all entries that contain any object classes considered to be containers, as
well as any entries that have children of their own. There are methods to switch
between this mode and the mode in which all children are searched:

/**

* Set default filter, which causes only container nodes to be

* displayed in the tree

*/

306 Don’t Redo It, Reuse It: LDAP JavaBeans

private String initializeChildFilter() {

Hashtable containers = getContainers();

/* "numSubordinates>=1" is not indexed, but

"(&(numSubordinates=*)(numSubordinates>=1))" is, in DS 4.0

*/

String filter = "(|(&(numSubordinates=*)(numSubordinates>=1))";

Enumeration e = containers.keys();

while(e.hasMoreElements())

filter += "(objectclass=" + (String)e.nextElement() + ")";

filter += ")";

Debug.println("DirModel.initializeChildFilter: " +

filter);

return filter;

}

/**

* Report if the model will supply node objects for tree nodes.

* If false (the default), only container nodes will appear.

*

* @return true if leaf nodes are to be displayed in the tree

*/

public boolean getAllowsLeafNodes() {

return _allowLeafNodes;

}

/**

* Determines if the model will supply node objects for tree nodes.

* If false (the default), only container nodes will appear.

*

* @param allow true if leaf nodes are to be displayed in the tree

*/

public void setAllowsLeafNodes(boolean allow) {

if (allow) {

setChildFilter("objectclass=*");

} else {

setChildFilter(initializeChildFilter());

}

_allowLeafNodes = allow;

contentChanged();

}

/**

* Used between DirNode and DirModel, to manage the search

* filter used to find children of a node

Graphical LDAP JavaBeans 307

*

* @return the search filter to be used to find direct children

*/

public String getChildFilter() {

return _childFilter;

}

/**

* Set the search filter used to find children of a node

*

* @param filter the search filter to be used to find

* direct children

*/

public void setChildFilter(String filter) {

_childFilter = filter;

}

The initialize method creates the root node, which fetches all public and
optionally all private suffixes and adds them as children. It is necessary to explicitly
enumerate the suffixes because the root entry in LDAP has no children. Extra work is
required to figure out what the public and private suffixes of the directory are, in
order to retrieve them and present them as children.

/**

* Create root node and a node for each suffix

*

* @param root root node for the tree. If null, a new root node

* will be created and the root entry will be searched for suffixes.

*/

public void initialize(Object root) {

if (root == null) {

root = new RootDirNode(this, getShowsPrivateSuffixes());

Debug.println(9, "DirModel.initialize: new root");

} else {

((DirNode)root).setModel(this);

Debug.println(9, "DirModel.initialize: old root=" +

root);

}

setRoot(root);

}

Many methods are called by—or call back to—the JTree object. Most of these
methods delegate the responsibility to the IDirNode involved:

308 Don’t Redo It, Reuse It: LDAP JavaBeans

/**

* Get a child node of a node

*

* @param node parent node

* @param index position of the child

* @return the child of the specified node

*/

public Object getChild(Object node, int index) {

IDirNode sn = (IDirNode) node;

return sn.getChildAt(index);

}

/**

* Return the number of children

*

* @param node node to be checked

* @return number of children of the specified node

*/

public int getChildCount(Object node) {

IDirNode sn = (IDirNode) node;

return sn.getChildCount();

}

/**

* Returns the index of a particular child node

* @param parent parent node

* @param child child node

* @return position of the child

*/

public int getIndexOfChild(Object parent, Object child) {

return ((IDirNode) parent).getIndex(

(IDirNode) child);

}

/**

* Check whether the node is a leaf node or not

*

* @param node node to be checked

* @return true if the node is leaf, false otherwise

*/

public boolean isLeaf(Object node) {

IDirNode sn = (IDirNode) node;

return (sn.isLeaf());

}

Graphical LDAP JavaBeans 309

The model provides the expected methods for managing listeners:

/**

* Adds a listener that is interested in receiving TreeModelListener

* events. Called by JTree.

*

* @param l an object interested in receiving TreeModelListener

* events

*/

public void addTreeModelListener(TreeModelListener l) {

_listenerList.add(TreeModelListener.class, l);

}

/**

* Removes a listener that is interested in receiving

* TreeModelListener events. Called by JTree.

*

* @param l an object interested in receiving TreeModelListener

* events

*/

public void removeTreeModelListener(TreeModelListener l) {

_listenerList.remove(TreeModelListener.class, l);

}

/**

* Informs the tree that a particular node has changed

*

* @param node the node that changed

* @see EventListenerList

*/

public void fireTreeNodeChanged(DirNode node) {

// Guaranteed to return a non-null array

Object[] listeners = _listenerList.getListenerList();

TreeModelEvent e = null;

// Process the listeners last to first, notifying

// those that are interested in this event

for (int i = listeners.length - 2; i >= 0; i -= 2) {

if (listeners[i] == TreeModelListener.class) {

// Lazily create the event:

if (e == null)

e = new TreeModelEvent(this, node.getPath());

((TreeModelListener)listeners[i + 1]).treeNodesChanged(e);

}

}

}

310 Don’t Redo It, Reuse It: LDAP JavaBeans

/**

* Informs tree that a particular node’s structure has changed

* and its view needs to be updated.

* @param node the node at the root of the changes

* @see EventListenerList

*/

public void fireTreeStructureChanged(IDirNode node) {

// Guaranteed to return a non-null array

Object[] listeners = _listenerList.getListenerList();

TreeModelEvent e = null;

// Process the listeners last to first, notifying

// those that are interested in this event

for (int i = listeners.length - 2; i >= 0; i -= 2) {

if (listeners[i] == TreeModelListener.class) {

// Lazily create the event:

if (e == null)

e = new TreeModelEvent(this, ((DirNode)node).getPath());

TreeModelListener l = (TreeModelListener)listeners[i + 1];

l.treeStructureChanged(e);

}

}

}

/**

* Called when user has altered the value for the item identified

* by path to newValue. Called by JTree.

*

* @param path path to the changed node

* @param newValue new value of the node

*/

public void valueForPathChanged(TreePath path,

Object newValue) {

}

The method contentChanged is called when another component with which
DirModel has registered an interest in changes in directory contents wishes to notify
DirModel. A few helper methods cause regeneration of part or all of the tree:

/**

* Called when the tree structure has changed radically; read a new

* tree from the server

*/

public void contentChanged() {

newTree();

}

Graphical LDAP JavaBeans 311

void repaintObject(IDirNode node) {

Debug.println("DirModel.repaintObject: " +

node);

fireTreeStructureChanged((DirNode)node);

}

private void newTree() {

DirNode root = new RootDirNode(this, "",

getShowsPrivateSuffixes());

Debug.println(9, "DirModel.newTree: new root");

setRoot(root);

refreshTree();

}

private void refreshNode(IDirNode node) {

node.load();

repaintObject(node);

}

private void refreshTree() {

refreshNode((IDirNode)getRoot());

}

All nodes share the LDAP connection of the model, which they access through
getLDAPConnection, as the following block of code shows. It is also possible to set
the connection after object instantiation—for example, on deserialization.

/**

* Returns the server connection used to populate the tree

*

* @return the server connection used to populate the tree

*/

public LDAPConnection getLDAPConnection() {

return _ldc;

}

/**

* Sets the server connection used to populate the tree

*

* @param ldc the server connection used to populate the tree

*/

public void setLDAPConnection(LDAPConnection ldc) {

_ldc = ldc;

}

312 Don’t Redo It, Reuse It: LDAP JavaBeans

There are several accessors for properties of the model:

/**

* Returns root node of the tree.

*

* return Root node of the tree

*/

public Object getRoot() {

return _root;

}

/**

* Sets root node of the tree

*

* @param root root node for the tree

*/

public void setRoot(Object root) {

_root = (IDirNode) root;

}

/**

* Get the parameter that determines if the

* ManageDsaIT control is sent with each search

*

* @returns true if referrals are to be followed

*/

public boolean getReferralsEnabled() {

return _followReferrals;

}

/**

* Set a parameter for future searches that determines if the

* ManageDsaIT control is sent with each search. If referrals are

* disabled, the control is sent and you will receive the referring

* entry back.

*

* @param on true (the default) if referrals are to be followed

*/

public void setReferralsEnabled(boolean on) {

_followReferrals = on;

}

/**

* Get the schema of the directory instance

Graphical LDAP JavaBeans 313

*

* @return a reference to a schema object

*/

public LDAPSchema getSchema() {

if (_schema == null) {

_schema = new LDAPSchema();

try {

_schema.fetchSchema(getLDAPConnection());

} catch (LDAPException e) {

Debug.println("DirModel.getSchema: " + e);

_schema = null;

}

}

return _schema;

}

/**

* Sets a reference to the schema of the directory instance

*

* @param schema a reference to a schema object

*/

public void setSchema(LDAPSchema schema) {

_schema = schema;

}

/**

* Report if the model will show private suffixes.

* If true (the default), private suffixes will appear.

*

* @return true if private suffixes are to be displayed in the tree

*/

public boolean getShowsPrivateSuffixes() {

return _showPrivateSuffixes;

}

/**

* Determines if the model will supply node objects for tree nodes.

* If false (the default), only container nodes will appear.

*

* @param allow true if leaf nodes are to be displayed in the tree

*/

public void setShowsPrivateSuffixes(boolean showPrivate) {

_showPrivateSuffixes = showPrivate;

contentChanged();

}

314 Don’t Redo It, Reuse It: LDAP JavaBeans

Some methods manage the definitions of the object classes that are to be consid-
ered containers:

/**

* Get object classes that are to be considered containers

* from a properties file

*

*/

private static Hashtable initContainerNames() {

Hashtable h = new Hashtable();

String items = _resource.getString(_section, "containers");

Debug.println("DirModel.initContainerNames");

if (items != null) {

StringTokenizer st = new StringTokenizer(items, " ");

int i = 0;

while (st.hasMoreTokens()) {

String name = st.nextToken().toLowerCase();

Debug.println(" added container type " + name);

h.put(name, name);

}

}

return h;

}

/**

* Add the name of an object class to be considered a container

*

* @param name name of an object class to be considered a container

*/

public void addContainerName(String name) {

_cContainers.put(name, name);

}

/**

* Used between DirNode and DirModel, to manage the list of

* object classes that are to be considered containers

*

* @return a hash table containing object classes to be

* considered containers

*/

public Hashtable getContainers() {

if (_cContainers == null)

_cContainers = initContainerNames();

return _cContainers;

}

Graphical LDAP JavaBeans 315

Finally, member variables are declared:

// Properties for this component (strings)

static ResourceSet _resource =

new ResourceSet("dirtree");

// Section of the properties file to use

private static final String _section = "EntryObject";

// Active connection to directory

private LDAPConnection _ldc;

// Schema definitions

private LDAPSchema _schema = null;

// Control to use if referrals are not to be followed

private static LDAPControl _manageDSAITControl =

new LDAPControl(LDAPControl.MANAGEDSAIT, true, null);

// Root node of the tree

private IDirNode _root = null;

private boolean _followReferrals = true;

private boolean _allowLeafNodes = false;

// List of possible container object classes

private Hashtable _cContainers = null;

// Filter string to search for immediate children

private String _childFilter;

// Helper object to manager event listeners

protected EventListenerList _listenerList =

new EventListenerList();

// Set this to false to NOT show private suffixes

private boolean _showPrivateSuffixes = true;

IDirNode

DirModel delegates much of its work to DirNode (Figure 10-10), which implements
the IDirNode interface (in addition to extending DefaultMutableTreeNode).

public interface IDirNode extends javax.swing.tree.TreeNode,

javax.swing.tree.MutableTreeNode {

/**

* Specifies the name for this object, displayed in tree, right of icon

*

* @return a string representing the object’s name

*/

public String getName();

316 Don’t Redo It, Reuse It: LDAP JavaBeans

/**

* Specifies an icon for this object, displayed in tree, left of name.

* The recommended size for this icon is 16_16 pixels.

*

* @return an icon representing the object’s icon

*/

public Icon getIcon();

/**

* Get the DN of the entry corresponding to this node

*

* @return the DN of the node

*/

public String getDN();

/**

* Set the DN of the node

*

* @param dn the new DN of the node

*/

public void setDN(String dn);

/**

* Report the entry associated with this node. If the entry has not been

Graphical LDAP JavaBeans 317

getName() : String
getIcon() : Icon
getDN() : String
setDN(dn : String) : void
getEntry() : LDAPEntry
setEntry(entry : LDAPEntry) : void
isLoaded() : boolean
reload() : void
initializeFromEntry(findEntry : LDAPEntry) : void
load() : void
isContainer() : boolean

«Interface»
IDirNode

FIGURE 10-10. IDirNode.

* retrieved from the directory yet, it is done now.

*

* @return the entry associated with this node. Only a few attributes are

* retrieved in the entry.

*/

public LDAPEntry getEntry();

/**

* Set the entry for this node

*

* @param entry the new entry. May be null to force reinitialization.

*/

public void setEntry(LDAPEntry entry);

/**

* Returns true if the node has read its entry from the directory

*

* @return true if the node has read its entry from the directory

*/

public boolean isLoaded();

/**

* Create all the one-level child nodes

*/

public void reload();

/**

* Initialize the node from data in an entry

*

* @param entry an entry initialized with data

*/

public void initializeFromEntry(LDAPEntry findEntry);

/**

* Check if there are children to this node

*/

public void load();

/**

* Report if this node is considered a container. This is true if it is

* one of a defined list of object classes, or if it has children.

*

* @return true if the node is considered a container

318 Don’t Redo It, Reuse It: LDAP JavaBeans

*/

public boolean isContainer();

}

DirNode

DirNode (Figure 10-11) is a fairly large class. We won’t go into its complete definition
here, but we’ll discuss the main things that distinguish it from a standard JFC
DefaultMutableTreeNode.

RootDirNode (Figure 10-12) is derived from DirNode. The main difference is that
the root node in a directory—called the root DSE (the special entry with the empty
DN)—returns nothing if you do a one-level search on it. To get the public and private
suffixes of the directory, you have to look elsewhere. RootDirNode overrides the
method to get children of itself, and it is set up to retrieve the suffixes on instantiation.

DirNode maintains its own image and display label. Appropriate images for var-
ious object classes are defined in a properties file, and additional images can be added
there. The properties file entries are as follows:

EntryObject-person-icon=alluser16n.gif

EntryObject-organization-icon=folder.gif

EntryObject-organizationalunit-icon=ou16.gif

EntryObject-groupofuniquenames-icon=allgroup16n.gif

EntryObject-default-icon=genobject.gif

EntryObject-default-folder-icon=folder.gif

When a node is initialized from a directory entry, an appropriate image and label
are selected:

/**

* Initialize the node from data in an entry

*

* @param entry an entry initialized with data

*/

public void initializeFromEntry(LDAPEntry entry) {

_fLoaded = (entry.getAttribute(SUBORDINATE_ATTR) != null);

_objectClasses = checkObjectClasses(entry);

_fContainer = checkIfContainer();

setIcon(checkIcon(_objectClasses, !isContainer()));

_sCn = checkCn(entry);

if (_sCn != null) {

setName(_sCn);

}

}

Graphical LDAP JavaBeans 319

320 Don’t Redo It, Reuse It: LDAP JavaBeans

_fLoaded : boolean = false
_iChildren : int = -1
_fContainer : boolean = false
_objectCode : long = 0
_isBogus : boolean = false

DirNode()
DirNode(isBogus : boolean)
DirNode(model : IDirModel, dn : String, displayName : String)
DirNode(model : IDirModel, dn : String)
DirNode(dn : String)
DirNode(model : IDirModel, entry : LDAPEntry()
initialize(model : IDirModel, dn : String, displayName : String) : void
getMode1() : IDirModel
setModel(model : IDirModel) : void
getName() : String
setName(name : String) : void
geticon() : Icon
seticon(icon : Icon) : void
getAllowLeafNodes() : boolean
getEntry() : LDAPEntry
setEntry(entry : LDAPEntry() : void
initDefaultIconName() : String
initDefaultFolderIconName() : String
getDN() : String
setDN(dn : String) : void
getLDAPConnection() : LDAPConnection
1oad() : void
readEntry(dn : String, attrs: String[]) : LDAPEntry
isContainer() : boolean
reload() : void
getChildList() : Vector
countChildren(all : boolean) : int
isLoaded() : boolean
getCountFromEntry(entry : LDAPEntry() : int
getCountFromEntry() : int
initializeFromEntry(entry : LDAPEntry() : void
hasChildren() : boolean
hasCheckedForChildren() : boolean
checkObjectClasses(entry : LDAPEntry() : Hashtable
checkIfContainer() : boolean
checkIcon(objectClasses : Hashtable, isLeafNode : boolean) : ImageIcon
getFirstValue(entry : LDAPEntry, attrName : String) : String
checkCn(entry : LDAPEntry() : String
getChildAt(index : ins) : TreeNode
getChildCount() : int
removeAllChildren() : void
isLeaf() : boolean
toString() : String
childExists(node : IDirNode) : boolean
getBogusEntryObject() : DirNode
isRootDSE(dn : String) : boolean
getChildFilter() : String

DirNode

FIGURE 10-11. DirNode.

/**

* Create hash table of object classes from the entry

*

* @param entry entry containing at least object classes

* @return a hash table of the object classes

*/

protected Hashtable checkObjectClasses(LDAPEntry entry) {

if (_objectClasses != null)

return _objectClasses;

Hashtable objectClasses = new Hashtable();

LDAPAttribute attr = entry.getAttribute(

"objectclass");

String[] names = { "top" };;

/* attr should never be null, but there is a bug in

"cn=monitor,cn=ldbm" */

if (attr != null) {

Enumeration e = attr.getStringValues();

while (e.hasMoreElements()) {

String name = (String)e.nextElement();

objectClasses.put(name.toLowerCase(), name);

}

}

return objectClasses;

}

Graphical LDAP JavaBeans 321

_ShowPrivateSuffixes : boolean = true

RootDirNode(model : IDirModel, displayName : String,
ShowPrivateSuffixes : boolean)

RootDirNode(model : IDirModel, ShowPrivateSuffixes : boolean)
RootDirNode(model : IDirModel, entry : LDAPEntry, ShowPrivateSuffixes:

boolean)
initialize(model : IDirModel, dn : String, displayName : String) : void
load() : void
isLeaf() : boolean
getNode(dn : String) : DirNode
addSuffixNodes(e : Enumeration) : void
getChildList() : Vector
initializeFromEntry(entry : LDAPEntry) : void

RootDirNode

FIGURE 10-12. RootDirNode.

/**

* Report if this node is to be considered a container

*

* @return true if the node has children or is of container

* type

*/

protected boolean checkIfContainer() {

if (getCountFromEntry() > 0) {

return true;

}

Hashtable containers = getModel().getContainers();

Enumeration e = _objectClasses.elements();

while (e.hasMoreElements()) {

String s = (String)e.nextElement();

if (containers.get(s) != null) {

return true;

}

}

return false;

}

/**

* Find an appropriate image for a node, based on the

* object classes specified and whether or not it is a

* leaf node

*

* @param objectClasses hash table containing object classes

* for which to look for an icon

* @param isLeafNode true if this is for a leaf node

* @return an appropriate image

*/

static ImageIcon checkIcon(Hashtable objectClasses,

boolean isLeafNode) {

String iconName = "";

Enumeration e = objectClasses.keys();

while (e.hasMoreElements()) {

String s = ((String)e.nextElement()).toLowerCase();

iconName = (String)_icons.get(s);

if (iconName == null) {

iconName = _resource.getString(_section,

s+"-icon");

if (iconName == null)

iconName = "";

_icons.put(s, iconName);

}

322 Don’t Redo It, Reuse It: LDAP JavaBeans

if (!iconName.equals(""))

break;

}

if (iconName.equals("")) {

if (isLeafNode)

iconName = _defaultImageName;

else

iconName = _defaultFolderImageName;

}

return ImageUtil.getPackageImage(iconName);

}

DirModel delegates most messages from JTree to DirNode. Of special interest is
how DirNode handles the isLeaf, getChildCount, and getChildAt methods. We
don’t want to populate the whole tree when it is instantiated. That might take a long
time and use a lot of memory. We want to read only as much as is necessary to render
the parts of the tree that the user has traversed.

With Netscape Directory Server or MessagingDirect LDAP Server, you can
determine if a particular node has children and how many children it has by reading
the numSubordinates operational attribute. For the case in which all nodes are to be
displayed in the tree, the numSubordinates operational attribute is checked. If only
container nodes are to be displayed, it is necessary to do a one-level search of the
directory to see if there are any child entries of the container type. However, this
search has been optimized in the following block of code: if numSubordinates is 0,
then the number of container children must also be 0, and the search is not performed.

Netscape Directory Server also provides the hasSubordinates operational
attribute, which indicates whether or not a node has child entries, but not how many.
Other LDAP servers may provide similar attributes with other names.

/**

* Create a vector of all the one-level subnodes. The nodes

* are also added as subnodes to this node.

*

* @return a Vector of all direct child nodes

*/

protected Vector getChildList() {

String dn = getDN();

Debug.println(9, "DirNode.getChildList: <" + dn +

">, " + getChildFilter());

Vector v = null;

removeAllChildren();

try {

LDAPConnection ldc = getLDAPConnection();

Graphical LDAP JavaBeans 323

if (ldc == null) {

Debug.println("DirNode.getChildList: " +

"no LDAP connection");

return new Vector();

}

LDAPSearchConstraints cons =

ldc.getSearchConstraints();

// Unlimited search results

cons.setMaxResults(0);

LDAPControl[] controls;

if (!getModel().getReferralsEnabled()) {

// If not following referrals, send the

// manageDSAIT control, which tells the server

// to return referral entries as ordinary

// entries

controls = new LDAPControl[2];

controls[0] = _manageDSAITControl;

} else {

controls = new LDAPControl[1];

}

// Ask the server to sort the results, by

// specifying a sort control

String[] sortOrder =

{ "sn", "givenName", "cn", "ou", "o" };

LDAPSortKey[] keys =

new LDAPSortKey[sortOrder.length];

for(int i = 0; i < sortOrder.length; i++) {

keys[i] = new LDAPSortKey(sortOrder[i]);

}

controls[controls.length-1] =

new LDAPSortControl(keys, false);

cons.setServerControls(controls);

// Search for immediate children

LDAPSearchResults result =

ldc.search(dn, ldc.SCOPE_ONE,

getChildFilter(),

_baseAttrs, false, cons);

Debug.println(9, "DirNode.getChildList: <" + dn +

"> searching");

int found = 0;

while (result.hasMoreElements()) {

try {

// Add each entry found to the tree

LDAPEntry entry = result.next();

324 Don’t Redo It, Reuse It: LDAP JavaBeans

Debug.println(7, "DirNode.getChildList: " +

"adding <" +

entry.getDN() + ">");

DirNode node =

new DirNode(getModel(), entry);

insert(node, super.getChildCount());

found++;

} catch (LDAPException e) {

Debug.println("DirNode.getChildList: " +

"<" + dn + ">: " + e);

}

if ((found % 100) == 0) {

Debug.println(5, "DirNode.getChildList: " +

"added " + found);

}

}

_iChildren = super.getChildCount();

Debug.println(9, "DirNode.getChildList: <" +

dn + "> found " + found);

} catch (LDAPException e) {

Debug.println("DirNode.getChildList: " +

"<" + dn + "> " + e);

}

return children;

}

/**

* Count the number of children of this node that are containers

*

* @return the number of children that are containers

*/

protected int countContainerChildren() {

String dn = getDN();

int count = 0;

try {

LDAPConnection ldc = getLDAPConnection();

if (ldc == null) {

Debug.println(

"DirNode.countChildren: " +

"no LDAP connection");

return count;

}

LDAPSearchConstraints cons =

ldc.getSearchConstraints();

cons.setMaxResults(0);

Graphical LDAP JavaBeans 325

if (!getModel().getReferralsEnabled()) {

cons.setServerControls(_manageDSAITControl);

}

String[] attrs = { "dn" }; // Pseudo-attribute

String filter = (all) ? _allFilter :

getChildFilter();

Debug.println(9, "DirNode.countChildren: " +

"<" + dn + "> , " + filter);

LDAPSearchResults result =

ldc.search(dn, ldc.SCOPE_ONE,

filter,

attrs, false, cons);

while (result.hasMoreElements()) {

try {

LDAPEntry entry = result.next();

Debug.println(9,"DirNode.countChildren: " +

"<" + entry.getDN() + ">");

count++;

} catch (LDAPException e) {

// This is for inline exceptions and

// referrals

Debug.println("DirNode.countChildren: " +

"<" + dn + "> " + e);

}

}

} catch (LDAPException e) {

// This is for exceptions on the search request

Debug.println("DirNode.countChildren: " +

"<" + dn + ">: " + e);

}

return count;

}

/**

* Return the value of the numSubordinates attribute in an

* entry, or -1 if the attribute is not present

*

* @param entry the entry containing the attribute

* @return the number of children, or -1

*/

static int getCountFromEntry(LDAPEntry entry) {

String s = getFirstValue(entry, SUBORDINATE_ATTR);

if (s != null) {

326 Don’t Redo It, Reuse It: LDAP JavaBeans

int count = Integer.parseInt(s);

if (_verbose) {

Debug.println("DirNode.getCountFromEntry: <" +

entry.getDN() + "> = " + count);

}

return count;

}

return -1;

}

/**

* Return the value of the numSubordinates attribute in the

* entry of this node, or -1 if the attribute is not present

*

* @return the number of children, or -1

*/

protected int getCountFromEntry() {

return getCountFromEntry(getEntry());

}

/**

* Report the number of children (containers only) of this

* node

*

* @return the number of container nodes that are children

* of this node

*/

public int getChildCount() {

/* If there are no children at all, ... */

if (!hasCheckedForChildren()) {

if (!isLoaded()) {

load();

}

int count = getCountFromEntry();

if (count < 1) {

_iChildren = 0;

}

}

if (_iChildren < 0) {

if (getModel().getAllowsLeafNodes()) {

_iChildren = getCountFromEntry();

} else {

_iChildren = countContainerChildren();

}

Graphical LDAP JavaBeans 327

}

return _iChildren;

}

/**

* Check whether or not the node is a leaf node. Since this

* is used by JTree to determine whether or not to put an

* expander on the tree, return true if the node currently

* has no children.

*

* @return true if the node is leaf, false otherwise

*/

public boolean isLeaf() {

int count = getChildCount();

Debug.println(9, "DirNode.isLeaf: <" + getDN() +

"> : " + count +

" children");

return (count == 0);

}

/**

* Return a specific child of this node, by index. This

* currently assumes that all nodes in the tree are

* explicitly managed by JFC (and not by a virtual tree

* where we supply the contents).

*

* @param index zero-based index of child to return

* @return the node at the requested index, or null

*/

public TreeNode getChildAt(int index) {

TreeNode node = null;

Debug.println(9, "DirNode.getChildAt: <" +

getDN() + "> index " + index);

/* Search for and collect all children, if not already done */

int count = getChildCount();

if (count > super.getChildCount()) {

reload();

}

try {

node = super.getChildAt(index);

} catch (Exception e) {

// Request for node outside of range

Debug.println("DirNode.getChildAt: " + count +

" children " +

328 Don’t Redo It, Reuse It: LDAP JavaBeans

"available, number " + index +

" requested: " + e);

}

Debug.println(9, "DirNode.getChildAt: found <" +

((DirNode)node).getDN() + ">");

return node;

}

Put It All Together, What Do You Get?

Using the Bean is as simple as

LDAPConnection ldc = DirUtil.getLDAPConnection("manta.mcom.com",

389,

"cn=directory manager",

"password");

TreePanel tree = new TreePanel(new DirModel(ldc));

Figure 10-13 shows TreePanel in the mode in which only container entries are
displayed. TreePanel is displayed in the application TestTree, which allows selection
of various options from the command line:

• Display leaf nodes or only container nodes

• Show private suffixes or only public suffixes

Graphical LDAP JavaBeans 329

FIGURE 10-13. TreePanel with only containers.

• Follow referrals or not

• Show only the tree or the tree together with a table of child entries

If we want to display all nodes, including leaf nodes, then instantiation and ini-
tialization have to be done separately:

LDAPConnection ldc = DirUtil.getLDAPConnection("manta.mcom.com",

389,

"cn=directory manager",

"password");

DirModel model = new DirModel(ldc);

model.setAllowsLeafNodes(true);

model.initialize(null);

TreePanel tree = new TreePanel(model);

In Figure 10-14, both container entries and leaf entries are displayed.
To compile the code examples, you will need to have the bin directory of your

Java 2 installation in your PATH, and the LDAP JAR file ldapjdk.jar, as well as the

330 Don’t Redo It, Reuse It: LDAP JavaBeans

FIGURE 10-14. TreePanel with all nodes.

current working directory, in your CLASSPATH, as described in Chapter 3. You can
compile the examples in the source code directory for Chapter 10 using the following
command:

javac *.java

You can run TreePanel as an application using the command

java TreePanel localhost 389 "cn=directory manager" password

Substitute the host name of the machine where the directory is installed (if it is
not on the same machine where you are running the application), the port number of
the directory, a valid distinguished name, and a password for that DN. You can use
any valid DN and password, including anonymous, but a nonprivileged user will not
be able to see any of the private suffixes. The command looks like this for anonymous
access:

java TreePanel localhost 389 "" ""

Figure 10-15 illustrates TreePanel with only public suffixes displayed (because
it is executed as a nonprivileged user).

Graphical LDAP JavaBeans 331

FIGURE 10-15. Tree viewed by anonymous
user.

A Directory Lister

Displaying all the nodes of the directory in a tree has some disadvantages:

• It is hard to find a particular entry if a particular node contains many
entries.

• You may end up with a large number of entries in memory when the user
expands a node with many children.

• If you want to display attributes of entries, and not just the DNs or names,
you can display only one at a time.

It is common to display only container nodes in a tree, and then show children of
a selected node in a list or table. The list or table may display several attributes of each
child. The next JavaBean (SimpleTable) is a table with sorting, and an adapter to
hook up the TreePanel Bean with the table Bean.

SimpleTable (Figure 10-16) is a JPanel containing a simple extension of
JTable. It adds support for sorting by clicking on the column headers, and for eas-
ily changing the headers and data dynamically. It is not LDAP-aware; that’s the
purpose of the adapter. It is also not suitable for very large numbers of entries. In
Chapter 16 we will discuss the use of Virtual List View to handle the display of large
databases.

332 Don’t Redo It, Reuse It: LDAP JavaBeans

SimpleTable()
addRow(v : Vector) : void
removeAllRows() : void
SetColumnNames(names : String[]) : void
SetHeaderRenderer(renderer : TableCellRenderer) : void
SetColumnWidths(ColumnWidth : int[]) : void
fireTableDataChanged() : void
fireTableStructureChanged() : void

SimpleTable

FIGURE 10-16. SimpleTable.

SimpleTable offers the following methods of interest, dispatching to the table:

/**

* Add a row to the table model without triggering an event to notify

* the table to update itself. After finishing adding all rows,

* fireTableDataChanged should be called to notify the table.

*

* @param v a row to add

*/

public void addRow(Vector v) {

_tableModel.getDataVector().addElement(v);

}

/**

* Remove all rows from the model and notify the table

*/

public void removeAllRows() {

Vector v = _tableModel.getDataVector();

v.removeAllElements();

_tableModel.fireTableDataChanged();

}

/**

* Set the column header labels and attach the sorting header

* renderer

*

* @param names array of one label for each column

*/

public void setColumnNames(String[] names) {

_tableModel.setColumnIdentifiers(names);

setHeaderRenderer(_renderer);

}

/**

* Attach the sorting header renderer to each column

*/

public void setHeaderRenderer(TableCellRenderer renderer) {

TableColumnModel model = _table.getColumnModel();

for (int i = model.getColumnCount() - 1; i >= 0; i—) {

model.getColumn(i).setHeaderRenderer(renderer);

}

}

/**

* Set the column widths of the table

Graphical LDAP JavaBeans 333

*

* @param columnWidth array of one width for each column

*/

public void setColumnWidths(int[] columnWidth) {

TableColumnModel model = _table.getColumnModel();

for (int i = 0; i < columnWidth.length; i++) {

model.getColumn(i).setPreferredWidth(columnWidth[i]);

}

_table.sizeColumnsToFit(-1);

}

/**

* Notify the table that all the data has changed

*/

public void fireTableStructureChanged() {

_tableModel.fireTableStructureChanged();

_tableModel.getIndexes();

}

EntryListAdapter (Figure 10-17) acts on selection events from TreePanel and
searches the directory to provide data for SimpleTable:

/**

* The selection changed

*

* @param nodes array of selected tree nodes

*/

public void selectionChanged(IDirNode[] nodes) {

String dn = nodes[0].getDN();

Debug.println("EntryListAdapter.selectionChanged: " + dn);

_table.removeAllRows();

try {

LDAPSearchConstraints cons =

(LDAPSearchConstraints)_ldc.getSearchConstraints().clone();

cons.setMaxResults(0);

LDAPControl[] controls = new LDAPControl[1];

String[] sortOrder = { "sn", "givenName", "cn", "ou", "o" };

LDAPSortKey[] keys = new LDAPSortKey[sortOrder.length];

for(int i = 0; i < sortOrder.length; i++) {

keys[i] = new LDAPSortKey(sortOrder[i]);

}

controls[controls.length-1] =

new LDAPSortControl(keys, true);

cons.setServerControls(controls);

LDAPSearchResults result =

_ldc.search(dn, _ldc.SCOPE_ONE, "objectclass=*",

334 Don’t Redo It, Reuse It: LDAP JavaBeans

getAttributesToFetch(), false, cons);

LDAPEntry entry;

Vector all = new Vector();

String[] displayAttrs = getAttributesToDisplay();

String[] nameAttrs = getNameSynonyms();

while (result.hasMoreElements()) {

Vector v = new Vector();

entry = result.next();

v.removeAllElements();

for(int i = 0; i < displayAttrs.length; i++) {

v.addElement(getAttr(entry, displayAttrs[i],

nameAttrs));

}

_table.addRow(v);

}

_table.fireTableStructureChanged();

_table.setColumnNames(getColumnNames());

_table.setColumnWidths(getColumnWidths());

Graphical LDAP JavaBeans 335

_widths[]: int = {140, 140, 70, 100}

EntryListAdapter()
EntryListAdapter(Idc : LDAPConnection, table : SimpleTable)
setLDAPConnection(Idc : LDAPConnection) : void
getLDAPConnection() : LDAPConnection
setTable(table : SimpleTable) : void
getTable() : SimpleTable
setColumnNames(names : String[]) : void
getColumnNames() : String[]
getColumnWidths() : int[]
setColumnWidths(widths : int[]) : void
getAttributesToFetch() : String[]
setAttributesToFetch(attrs : String[]) : void
getAttributesToDisplay() : String[]
setAttributesToDisplay(attrs : String[]) : void
getNameSynonyms() : String[]
setNameSynonyms(names : String[]) : void
getChildFilter() : String
setChildFilter(ChildFilter : String) : void
selectionChanged (nodes : IDirNode[]) : void
getAttr(entry : LDAPEntry, name : String, nameAttrs : String[]):

String
actionInvoked(ev : DirNodeEvent) : void

EntryListAdapter

FIGURE 10-17. EntryListAdapter.

} catch (LDAPException e) {

System.err.println("EntryLister.selectionChanged" +

" cannot get entry <" + dn + ">");

}

}

private String getAttr(LDAPEntry entry, String name,

String[] nameAttrs) {

String value = " ";

LDAPAttribute attr = null;

// For the special cn case, check several possible

// attributes

if (name.equals("cn")) {

for(int i = 0;

(attr == null) && (i < nameAttrs.length); i++) {

attr = entry.getAttribute(nameAttrs[i]);

}

} else {

attr = entry.getAttribute(name);

}

if (attr != null) {

Enumeration en = attr.getStringValues();

if ((en != null) && (en.hasMoreElements())) {

value = (String)en.nextElement();

}

}

return value;

}

EntryListAdapter has accessor methods to configure what attributes are dis-
played, how the columns should be labeled, and so on:

/**

* Headings to display on columns. The default is:

* { "Name", "Email", "User ID", "Phone" }

*

* @return headings to display on columns

*/

public String[] getColumnNames() {

return _names;

}

public void setColumnNames(String[] names) {

_names = names;

}

336 Don’t Redo It, Reuse It: LDAP JavaBeans

/**

* Widths of columns. The default is:

* { 140, 140, 60, 100 }

*

* @return widths of columns

*/

public int[] getColumnWidths() {

return _widths;

}

public void setColumnWidths(int[] widths) {

_widths = widths;

}

/**

* Attributes to search for. The default is:

* { "cn", "mail", "uid", "telephoneNumber", "ou",

* "o", "displayName" }

*

* @return attributes to search for

*/

public String[] getAttributesToFetch() {

return _attrs;

}

public void setAttributesToFetch(String[] attrs) {

_attrs = attrs;

}

/**

* Attributes to display. The default is: { "cn", "mail",

* "uid", "telephoneNumber" }

*

* @return attributes to display

*/

public String[] getAttributesToDisplay() {

return _displayAttrs;

}

public void setAttributesToDisplay(String[] attrs) {

_displayAttrs = attrs;

}

/**

* Attributes that may be used to display in the cn column,

* in priority order. The default is:

* { "displayName", "cn", "ou", "o" }.

Graphical LDAP JavaBeans 337

*

* @return attributes that may be used to display in the cn

column

*/

public String[] getNameSynonyms() {

return _nameAttrs;

}

public void setNameSynonyms(String[] names) {

_nameAttrs = names;

}

TreePanel and SimpleTable Join Forces

It doesn’t take much code to hook up the two Beans:

LDAPConnection ldc = DirUtil.getLDAPConnection("manta.mcom.com",

389,

"cn=directory manager",

"secretdog");

TreePanel tree = new TreePanel(new DirModel(ldc));

SimpleTable table = new SimpleTable();

EntryListAdapter lister = new EntryListAdapter(ldc,

tree,

table);

// EntryListAdapter could add itself as a listener, but we’ll

// do it here just to demonstrate

tree.addDirNodeListener(lister);

JSplitPane splitPane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,

sp, table);

splitPane.setBorder(new EmptyBorder(6, 6, 6, 6));

frame.getContentPane().add(splitPane);

Figure 10-18 shows TreePanel and SimpleTable connected and functioning as
a directory browser.

Figure 10-19 demonstrates that the data can be sorted by any column and in
either ascending or descending order.

SimpleTable also offers events on selection, so it can be used to trigger other
actions—for example, to launch a user editor for a selected user, or to delete the
selected user.

You can run the TestTree application using the following command:

java TestTree localhost 389 "cn=directory manager" password

338 Don’t Redo It, Reuse It: LDAP JavaBeans

Graphical LDAP JavaBeans 339

FIGURE 10-18. TreePanel and SimpleTable.

FIGURE 10-19. Selecting a different sort column and direction.

Substitute the host name of the machine where the directory is installed (if it is
not on the same machine where you are running the application), the port number of
the directory, a valid distinguished name, and a password for that DN.

Conclusion

In this chapter we have looked at several JavaBeans for LDAP programming. Some
are invisible and simply encapsulate subsets of the functionality of the class library;
others capture and render directory contents in graphical form and allow the user to
interact with them. LDAP JavaBeans can be combined easily, using a small amount of
Java or JavaScript glue code. The Beans can be configured and the glue code generated
in an IDE (integrated development environment) that understands JavaBeans, without
additional coding. A complete application or applet can be composed of one or more
LDAP JavaBeans that communicate through a listener interface.

340 Don’t Redo It, Reuse It: LDAP JavaBeans

Most applications store user preferences or configuration information. For exam-
ple, some applications store the size and positions of windows used, directories

selected for importing and exporting files, and other default values. Because these
preferences are saved, the user does not have to reenter them when using the applica-
tion again.

Remembering the user’s preferences becomes more complicated if the applica-
tion is shared (for example, if the application is accessed from a network file system)
and if the application may be run by many users. In such a scenario, the application
may need to keep a database of preferences for each user or store the preferences in
the home directory of each user (as is the case with many UNIX applications).

Maintaining individual user preferences becomes much more complicated if the
application is Web based and a user may be accessing the application from many dif-
ferent machines. Perhaps she uses it from work most of the time, but she also fre-
quently uses it from a home machine, and sometimes from a cybercafe when away
from home. Now a database is definitely required. The application doesn’t have access
to the same set of preferences when running on the computer at home, the computer
at work, and the computer at the cybercafe. Preferences cannot be stored on a user’s
computer or in the user’s home directory; the computers are different, and there is no
home directory on the Web.

One solution is to store the preferences in a directory that is accessible from all
computers the user might be using. We mentioned one such directory in Chapter 3:
the Netcenter membership directory at ldap://memberdir.netscape.com:389/
ou=member_directory.o=netcenter.com. Netcenter members can have their book-
marks and address books stored there rather than locally by Netscape Communicator,
and then have access to them from wherever they access their Netcenter home page.

Make Your
Application
Location-
Independent

341

C H A P T E R 1 1

In this chapter we’ll show how an application can be made to store and retrieve
user preferences using LDAP.

The Teex Multicharacter-Set Text Editor

You’ve got Notepad, vi, or emacs. But do these text editors handle the UTF8 character
set? How about shift-jis and EUC? It’s a brave new world of applications localized in
many languages and character sets, and in the world of LDAP the common character
set is UTF8.

If you are responsible for writing a directory-enabled application that can handle
character sets other than good old latin-1, you may have to verify that it will work
with double-byte data for languages such as Japanese, Chinese, or Korean. When you
import LDIF files into an LDAP server, the LDIF files must use the UTF8 character set,
not a local character set such as shift-jis (a common encoding for Japanese). This con-
straint means you can no longer use your favorite text editor or word processor to cre-
ate or edit your LDIF files (well, you can use them, as long as you then run the output
through a converter).

The simple text editor Teex will let you read, debug, and edit your files in many
character sets, including UTF8, and it will let you save the results in a character set of
your choice. In addition, Teex understands the peculiarities of the LDIF file format,
and it does the appropriate line continuation and base64 encoding or decoding auto-
matically if LDIF “encoding” is selected.

In the next section we’ll introduce Teex, and then we’ll see how its configuration
and preferences can be stored in an LDAP directory.

The Teex JavaBean

“Teex” stands for Text Editor and Translator. It was born out of necessity at Netscape
to help debug problems with the handling of double-byte character sets (for example,
the Asian languages) on importing and exporting data to a directory. It doesn’t do
much, but it has helped Netscape developers quash numerous bugs, and you may also
find it useful.

Because it extends JPanel, Teex is easy to embed in an application or an applet.
However, Teex is itself a full application, with its own menu bar. It includes a main
method so that it can be run from the command line as follows:

java Teex

When invoked with no parameters, Teex uses the default character set of the
Java environment and starts with no file open for editing (see Figure 11-1).

342 Make Your Application Location-Independent

Teex has a few settings that can be selected from the View menu:

• Foreground color

• Background color

• Font size

• Tab size

• Line wrap on or off

The settings are not saved when the program exits, but they will be by the time
we finish this chapter.

The Teex Multicharacter-Set Text Editor 343

FIGURE 11-1. Teex with no file loaded.

A Class for User Preferences

First we’ll define a general-purpose class for managing preference settings in memory:
Preferences (Figure 11-2). It is an abstract class. We must extend the class to provide
persistence. This book is concerned with LDAP, but another extension class could
store the preferences persistently in a file system, a database, or somewhere else.

The Preferences class extends Hashtable rather than implementing its own in-
ternal storage and indexes. It also declares itself Serializable in case a Preferences
object or a derived object is to be used as a JavaBean:

public abstract class Preferences extends Hashtable

implements Serializable {

/**

* Blank constructor for deserialization

*/

public Preferences() {

}

344 Make Your Application Location-Independent

Preferences()
Preferences(userKey : String)
getUserKey() : String
setUserKey(userKey : String) : void
getString(key : String) : String
getBytes(key : String) : byte[]
getObject(key : String) : Object
getInteger(key : String) : int
getBoolean(key : String) : boolean
setString(key : String, value : String) : void
setBytes(key : String, value : byte[]) : void
setInteger(key : String, value : int) : void
setBoolean(key : String, value : boolean) : void
setObject(key : String, value : Object) : void
save() : boolean
getChanges() : Hashtable
dump() : void
initialize() : boolean
isInitialized() : boolean
setInitialized(initialized : boolean) : void
deserializeObject(byteBuf : byte[]) : Object
serializeObject(obj : Object) : byte[]

Preferences

FIGURE 11-2. Preferences.

A String is used to identify the owner of the preferences. Usually the key will be
a user ID of some kind:

/**

* Normal constructor specifying user ID of some kind for

* identifying the user’s preferences

*

* @param userKey user ID or another unique identifier

*/

public Preferences(String userKey) {

setUserKey(userKey);

}

/**

* Report the user ID or other key to the user’s preferences

*

* @return user ID

*/

public String getUserKey() {

return _userKey;

}

/**

* Set the user ID or other key to user preferences

*

* @param userKey user ID

*/

public void setUserKey(String userKey) {

_userKey = userKey;

}

Our Preferences class will store all data internally as byte arrays. A byte array
presentation happens to be a good match for an LDAP directory, but it makes a good
common denominator as well. The accessors for getting and setting preference values
are responsible for the appropriate data conversions. For String conversions, UTF8
is assumed for the character set.

The lowest accessors are the ones that set and return byte arrays. The setBytes
method also keeps track of changes in the value, so that the changed values can be saved
without all preferences having to be saved. Note that getBytes calls initialize, so
that preferences may be read from persistent storage when they are first needed in an
application:

The Teex Multicharacter-Set Text Editor 345

/**

* Retrieve a single raw preference value, just as stored in the

* directory

*

* @param key key for the particular preference

* @return value of the preference

* @exception MissingResourceException if not found

*/

public byte[] getBytes(String key) {

if (!isInitialized()) {

if (!initialize()) {

return null;

}

}

byte[] value = (byte[])get(key.toLowerCase());

if (value != null) {

return value;

}

throw new MissingResourceException(

"Missing value", "Preferences", key);

}

/**

* Set a single raw preference value

*

* @param key key for the particular preference

* @param value value for the particular preference

*/

public void setBytes(String key, byte[] value) {

key = key.toLowerCase();

byte[] old = (byte[])get(key);

boolean different = ((old == null) ||

(old.length != value.length));

int i = value.length - 1;

while((i >= 0) && !different) {

different = (value[i] != old[i]);

i—;

}

if (different) {

put(key, value);

_changed.put(key, value);

}

}

346 Make Your Application Location-Independent

Then there are accessors for the common data types:

/**

* Retrieve a single String-valued preference value

*

* @param key key for the particular preference

* @return value of the preference

* @exception MissingResourceException if not found

*/

public String getString(String key) {

byte[] val = getBytes(key);

String s = null;

if (val != null) {

try {

s = new String(val, "UTF8");

} catch (UnsupportedEncodingException e) {

}

}

return s;

}

/**

* Retrieve a single preference value of integer type

*

* @param key key for the particular preference

* @return value of the preference

* @exception MissingResourceException if not found

*/

public int getInteger(String key) {

String s = getString(key);

if (s != null) {

return Integer.valueOf(s).intValue();

}

// Will never get this far, because there will be a

// MissingResourceException or NumberFormatException

// on error

return -1;

}

/**

* Retrieve a single preference value of boolean type

*

* @param key key for the particular preference

The Teex Multicharacter-Set Text Editor 347

* @return value of the preference

* @throw MissingResourceException if not found

*/

public boolean getBoolean(String key) {

String s = getString(key);

if (s != null) {

return Boolean.valueOf(s).booleanValue();

}

// Will never get this far, because there will be a

// MissingResourceException on error

return false;

}

/**

* Set a single String-valued preference

*

* @param key key for the particular preference

* @param value value for the particular preference

*/

public void setString(String key, String value) {

setBytes(key, value.getBytes());

}

/**

* Set a single integer-valued preference

*

* @param key key for the particular preference

* @param value value for the particular preference

*/

public void setInteger(String key, int value) {

String s = Integer.toString(value);

setString(key, s);

}

/**

* Set a single boolean-valued preference

*

* @param key key for the particular preference

* @param value value for the particular preference

*/

public void setBoolean(String key, boolean value) {

String s = new Boolean(value).toString();

setString(key, s);

}

348 Make Your Application Location-Independent

There are also methods for storing and retrieving Java objects as preferences.
The object is serialized before storing and deserialized when retrieved:

/**

* Retrieve a single preference value, instantiated as a Java class

*

* @param key key for the particular preference

* @return a deserialized object

* @exception MissingResourceException if not found

* @exception IOException on failure to deserialize

*/

public Object getObject(String key) throws IOException {

byte[] val = getBytes(key);

return deserializeObject(val);

}

/**

* Serialize an object

*

* @param key key for the particular preference

* @param value object to serialize

* @throw IOException on failure to serialize

*/

public void setObject(String key, Object value)

throws IOException {

byte[] val = serializeObject(value);

setBytes(key, val);

}

/**

* Deserializes an object - creates an object from a byte array

*

* @param byteBuf serialized form of object

* @return deserialized object

* @throw IOException on failure to deserialize

*/

protected static Object deserializeObject(byte[] byteBuf)

throws IOException {

ByteArrayInputStream bis = null;

ObjectInputStream objis = null;

try {

bis = new ByteArrayInputStream(byteBuf);

The Teex Multicharacter-Set Text Editor 349

objis = new ObjectInputStream(bis);

return objis.readObject();

} catch(Exception ex) {

throw(new IOException("Failed to deserialize object"));

} finally {

try {

if (objis != null) {

objis.close();

}

if (bis != null) {

bis.close();

}

}

catch (Exception ex) {}

}

}

/**

* Serializes an object - converts it to a byte array

*

* @param obj object to serialize

* @return serialized form of object

* @throw IOException on failure to serialize

*/

protected static byte[] serializeObject(Object obj)

throws IOException {

ByteArrayOutputStream bos = null;

ObjectOutputStream objos = null;

try {

bos = new ByteArrayOutputStream();

objos = new ObjectOutputStream(bos);

objos.writeObject(obj);

objos.flush();

return bos.toByteArray();

} catch(Exception ex) {

throw(new IOException(

"Failed to serialize object " + obj));

} finally {

try {

if (objos != null) {

objos.close();

}

350 Make Your Application Location-Independent

if (bos != null) {

bos.close();

}

}

catch (Exception ex) {}

}

}

Derived classes are responsible for implementing the save and initialize
methods to store and restore persistent state:

/**

* Save any changed preferences

*

* @return true on success

*/

abstract public boolean save();

/**

* Initialize the preferences (e.g., from persistent storage)

*

* @return true if the preferences were

* successfully initialized

*/

abstract protected boolean initialize();

A few utility methods help derived classes keep track of changes and of whether
or not the in-memory state is consistent with the state of persistent storage:

/**

* Report if the preferences have been initialized (e.g., from

* persistent storage)

*

* @return true if the preferences have been

* initialized

*/

protected boolean isInitialized() {

return _isInitialized;

}

/**

* Set the internal-state flag to show whether or not the preferences

The Teex Multicharacter-Set Text Editor 351

* have been initialized (e.g., from persistent storage)

*

* @param initialized true if the preferences

* have been initialized

*/

protected void setInitialized(boolean initialized) {

_isInitialized = initialized;

}

/**

* Get the hash table containing attributes that have changed

*

* @return the hash table of changed attributes

*/

protected Hashtable getChanges() {

return _changed;

}

Another method helps debug the applications that are using the preferences:

/**

* Debugging utility method: dumps the contents of the

* preferences

*

*/

public void dump() {

if (!isInitialized()) {

initialize();

}

Enumeration e = keys();

while(e.hasMoreElements()) {

String s = (String)e.nextElement();

System.out.println(" " + s + ": " + getString(s));

}

}

Finally, the variables to be shared across classes that extend the class Preferences
are declared:

private String _userKey = null;

private boolean _isInitialized = false;

private Hashtable _changed = new Hashtable();

352 Make Your Application Location-Independent

Storing Preferences as Attributes in User Entries

A natural place to store user preferences in the directory is the entry of each user (see
Figure 11-3). Users are often allowed to modify certain attributes in their own entries
in a directory but not in anyone else’s entry.

We are using attribute names like teexTabSize for the user preferences for Teex.
They are not valid attributes for the inetOrgPerson object class, and in a standard
directory installation they are not even defined attributes. If we attempted to assign
values to these attributes in a standard directory configuration, the server would
respond with a schema violation error message.

First we must add definitions for the new attributes and for the new object class
to the schema of the directory. We will discuss ways to read and update the schema
programmatically in Chapter 16. For now, we will use LDAPModify to add definitions
from an LDIF file:

java LDAPModify -D “cn=directory manager” -w password -f teexschema.ldif

The Teex Multicharacter-Set Text Editor 353

uid = tmorris
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: teexPreferences
cn: Ted Morris
sn: Morris
givenName: Ted
employeeNumber: 12347
uid: tmorris
mail: tmorris@airius.com
telephoneNumber: +1 408 555 9187
roomNumber: 4117
teexBackground: 65540
teexForeground: 1355620
teexTabSize: 8
teexFontSize: 12
teexLineWrap: true

uid = scarter
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: teexPreferences
cn: Sam Carter
sn: Carter
givenName: Sam
employeeNumber: 12346
uid: scarter
mail: scarter@airius.com
telephoneNumber: +1 408 555 4798
roomNumber: 4612
teexBackground: 308752
teexForeground: 431
teexTabSize: 4
teexFontSize: 18
teexLineWrap: false

ou = People

o = Airius.com

FIGURE 11-3. User preferences in user entries.

Our LDAPPreferences1 class (Figure 11-4) will retrieve values from these
attributes and save values to them, as the following block of code shows. An
LDAPPreferences1 object requires a URL that identifies the base DN of the subtree
where user preferences are stored, a user ID, and a password for the user. The user ID
and the URL will be used to locate the entry where preferences are stored, and the
password is required for updating the entry when the preferences change.

/**

* Normal constructor specifying user ID or some such key for

* identifying the user’s preferences, a URL identifying

* where user entries for preferences are to be found,

* and a password for the user

*

* @param userKey user ID or another unique identifier

* @param url LDAP URL indicating the host, port, and base DN

* from where to search for the user

* @param password password for the user

*/

public LDAPPreferences1(String url, String userKey,

String password) {

super(userKey);

354 Make Your Application Location-Independent

LDAPPreferences1

LDAPPreferences1()
LDAPPreferences1(url : String, userKey : String, password : String)
setUrl(url : String) : void
getUrl() : String
save() : boolean
initialize() : boolean
addPropertiesFromEntry(entry : LDAPEntry) : void
readEntry() : boolean
searchEntry() : String
initializeSchema() : boolean
main(args : String[]) : void

Preferences

FIGURE 11-4. LDAPPreferences1.

try {

setUrl(url);

} catch (java.net.MalformedURLException e) {

}

_password = password;

}

The URL and base DN are used together with the user ID to construct a search
URL. The search filter in the URL checks the uid attribute against the user ID:

/**

* Set the host, port, and base DN through an LDAP URL

*

* @param url LDAP URL indicating the host, port, and base DN

* from where to search for the user

*/

public void setUrl(String url)

throws java.net.MalformedURLException {

_url = null;

try {

LDAPUrl inUrl = new LDAPUrl(url);

// Make a complete LDAPUrl, including a search

// filter for uid matching userKey

String[] attrs = { "dn" }; // No attributes

_searchUrl = new LDAPUrl(inUrl.getHost(),

inUrl.getPort(),

inUrl.getDN(), attrs,

LDAPConnection.SCOPE_SUB,

"uid=" + getUserKey());

} catch (java.net.MalformedURLException e) {

System.err.println("Incorrect URL syntax: " + url);

throw e;

}

}

/**

* Report the host, port, and base DN through an LDAP URL

*

* @return LDAP URL indicating the host, port, and base DN

* from where to search for the user

*/

public String getUrl() {

return (_url != null) ? _url.getUrl() : null;

}

The Teex Multicharacter-Set Text Editor 355

When the object is to be initialized from persistent storage, the search URL is
evaluated. If one—and only one—matching entry is found, then a new, exact URL is
composed to read from that entry. We don’t want to write to attributes other than the
preference attributes (for example, the cn attribute), so at this point we also read the
schema of the directory and identify which attributes are part of the teexPreferences
object class:

/**

* Read preferences from directory

*

* @return true if successful

*/

protected boolean initialize() {

clear();

setInitialized(false);

if (_searchUrl == null) {

System.err.println("Incorrect URL syntax");

return false;

}

// Search for a single matching entry

if (_url == null) {

String dn = searchEntry();

if (dn != null) {

// Found it

String[] attrs = null; // Inefficient...

// URL to read one entry

_url = new LDAPUrl(_searchUrl.getHost(),

_searchUrl.getPort(),

dn, attrs,

LDAPConnection.SCOPE_BASE,

"objectclass=*");

System.out.println("URL: " + _url.getUrl());

if (!initializeSchema()) {

return false;

}

}

}

// Now we know the entry containing the preferences

boolean success = readEntry();

if (success) {

356 Make Your Application Location-Independent

setInitialized(true);

} else {

clear();

}

return success;

}

/**

* Get the preference values from an entry and store them

* internally

*

* @param entry an LDAP entry containing preference attributes

*/

protected void addPropertiesFromEntry(LDAPEntry entry) {

// Get the attributes

Enumeration en = entry.getAttributeSet().getAttributes();

while (en.hasMoreElements()) {

LDAPAttribute attr = (LDAPAttribute)en.nextElement();

String attrName = attr.getName().toLowerCase();

if (_allowed.contains(attrName)) {

// Assume only one value each

Enumeration valsEn = attr.getByteValues();

// Get the values

if (valsEn.hasMoreElements()) {

byte[] value = (byte[])valsEn.nextElement();

put(attrName, value);

}

}

}

}

/**

* Get the preference values from the directory and store

* them internally

*

* @return true if the values could be read

*/

protected boolean readEntry() {

clear();

try {

System.out.println("LDAPPreferences.readEntry: " +

"reading " + _url.getUrl());

LDAPEntry entry = LDAPConnection.read(_url);

The Teex Multicharacter-Set Text Editor 357

addPropertiesFromEntry(entry);

// Check if the entry has the preferences object class

Enumeration en =

entry.getAttribute("objectclass").

getStringValues();

while(en.hasMoreElements()) {

String val = (String)en.nextElement();

System.out.println("objectclass: " + val);

if (val.equalsIgnoreCase(PREFERENCES_OC)) {

_hasOc = true;

break;

}

}

return true;

} catch (LDAPException e) {

System.err.println("LDAPPreferences.readEntry: " + e);

}

return false;

}

/**

* Get the preference values from the directory and store

* them internally

*

* @return true if the values could be read

*/

protected boolean readEntry() {

clear();

try {

System.out.println("LDAPPreferences.readEntry: " +

"reading " + _url.getUrl());

LDAPEntry entry = LDAPConnection.read(_url);

addPropertiesFromEntry(entry);

// Check if the entry has the preferences object class

Enumeration en =

entry.getAttribute("objectclass").

getStringValues();

while(en.hasMoreElements()) {

String val = (String)en.nextElement();

System.out.println("objectclass: " + val);

if (val.equalsIgnoreCase(PREFERENCES_OC)) {

_hasOc = true;

break;

}

358 Make Your Application Location-Independent

}

return true;

} catch (LDAPException e) {

System.err.println("LDAPPreferences.readEntry: " + e);

}

return false;

}

/**

* Get the names of the attributes that are preferences by

* reading the directory schema

*

* @return true if the schema could be read

*/

protected boolean initializeSchema() {

if (_allowed == null) {

try {

LDAPSchema schema = new LDAPSchema();

LDAPConnection ldc = new LDAPConnection();

ldc.connect(_url.getHost(), _url.getPort());

schema.fetchSchema(ldc);

LDAPObjectClassSchema oc =

schema.getObjectClass(PREFERENCES_OC);

if (oc == null) {

System.err.println(

"LDAPPreferences.initializeSchema: "

+ "no object class in schema - " +

PREFERENCES_OC);

return false;

}

_allowed = new Hashtable();

Enumeration e = oc.getRequiredAttributes();

while(e.hasMoreElements()) {

String name = (String)e.nextElement();

if (!name.equalsIgnoreCase("objectclass")) {

_allowed.put(name.toLowerCase(), name);

}

}

e = oc.getOptionalAttributes();

while(e.hasMoreElements()) {

String name = (String)e.nextElement();

if (!name.equalsIgnoreCase("objectclass")) {

_allowed.put(name.toLowerCase(), name);

}

The Teex Multicharacter-Set Text Editor 359

}

} catch (LDAPException e) {

System.err.println(

"LDAPPreferences.initializeSchema: " + e);

return false;

}

}

return true;

}

When it is time to save the preferences, only preferences that are new or
that have changed are written to the directory. Note that the directory will reject
any values for the Teex attributes if the entry does not include the object class
teexPreferences. The save method adds the teexPreferences object class if it is
not already present:

/**

* Save any changed preferences

*

* @return true on success

*/

public boolean save() {

try {

Enumeration keys = getChanges().keys();

// Any changes to save?

if(!keys.hasMoreElements()) {

return true;

}

LDAPConnection ldc = new LDAPConnection();

ldc.connect(_url.getHost(), _url.getPort());

ldc.authenticate(_url.getDN(), _password);

LDAPModificationSet mods = new LDAPModificationSet();

// Do we need to add the preferences object class?

if (!_hasOc) {

mods.add(LDAPModification.ADD,

new LDAPAttribute("objectclass",

PREFERENCES_OC));

}

while(keys.hasMoreElements()) {

String name = (String)keys.nextElement();

byte[] value = (byte[])getChanges().get(name);

LDAPAttribute attr =

new LDAPAttribute(name, value);

360 Make Your Application Location-Independent

mods.add(LDAPModification.REPLACE, attr);

}

System.out.println("LDAPPreferences.save: " + mods);

ldc.modify(_url.getDN(), mods);

_hasOc = true;

getChanges().clear();

return true;

} catch (LDAPException e) {

System.err.println("LDAPPreferences.save: " + e);

}

return false;

}

LDAPPreferences1 has a few member variables of its own:

public final String PREFERENCES_OC = "teexPreferences";

private LDAPUrl _searchUrl = null; // Host, port, base DN

private LDAPUrl _url = null; // Complete URL of user entry

private String _password = null; // User password

private Hashtable _allowed = null; // Preference attributes

private boolean _hasOc = false;

Now we are ready to use our Preferences class with Teex.
The Teex class has the following constructors (other than the blank constructor

for deserialization):

public Teex(javax.swing.JFrame frame)

public Teex(javax.swing.JFrame frame, String filePath,

String encoding)

We’ll add a parameter to each for a Preferences object:

public Teex(javax.swing.JFrame frame, Preferences prefs)

public Teex(javax.swing.JFrame frame, String filePath,

String encoding, Preferences prefs)

In the following block of code, the constructors fetch any preferences that are in
the object and copy them to internal variables. Any preferences not available from the
object are ignored, and initial default values are used. Note that the first call to get a
value from the object will cause it to be initialized from the directory because the
Preferences object we are passing is actually an instance of LDAPPreferences1.

The Teex Multicharacter-Set Text Editor 361

public Teex(javax.swing.JFrame frame, Preferences prefs) {

...

initializePreferences(prefs);

...

}

/**

* Get the values we need from the preferences object

*

* @param prefs an object containing application preferences

*/

protected void initializePreferences(Preferences prefs) {

g_prefs = prefs;

if (g_prefs == null) {

return;

}

String key = "teexbackground";

try {

int i = g_prefs.getInteger(key);

textAreaBackground = new Color(i);

} catch (Exception e) {

// If the value was not there, stick with the default

System.out.println("Teex: no preference " + key);

}

key = "teexforeground";

try {

int i = g_prefs.getInteger(key);

textAreaForeground = new Color(i);

} catch (Exception e) {

System.out.println("Teex: no preference " + key);

}

key = "teextabsize";

try {

int i = g_prefs.getInteger(key);

tabSize = i;

} catch (Exception e) {

System.out.println("Teex: no preference " + key);

}

key = "teexfontsize";

try {

int i = g_prefs.getInteger(key);

fontSize = i;

} catch (Exception e) {

362 Make Your Application Location-Independent

System.out.println("Teex: no preference " + key);

}

key = "teexlinewrap";

try {

boolean wrap = g_prefs.getBoolean(key);

lineWrap = wrap;

} catch (Exception e) {

System.out.println("Teex: no preference " + key);

}

}

The internal variables are then used to initialize and configure the Teex panels,
just as before. When the user changes preferences by interacting with the View menu,
the changes are also recorded in the preferences object. For example, when line wrap
is enabled or disabled, the corresponding value is recorded as a boolean:

wrapMenu = new JMenuItem(lineWrap ? "Do Not Wrap Lines" :

"Wrap Lines");

wrapMenu.addActionListener (new ActionListener() {

public void actionPerformed(ActionEvent e) {

lineWrap = !lineWrap;

textArea.setLineWrap(lineWrap);

wrapMenu.setText(lineWrap ? "Do Not Wrap Lines" :

"Wrap Lines");

g_prefs.setBoolean(“teexlinewrap”, lineWrap);

};

});

viewMenu.add(wrapMenu);

When the user selects Exit from the File menu, the preferences are saved before
the application terminates:

JMenuItem exitMenu = new JMenuItem("Exit");

exitMenu.addActionListener (new ActionListener() {

public void actionPerformed(ActionEvent e) {

g_frameCount—;

if (g_frameCount <= 0) {

g_prefs.save();

g_frame.dispose();

System.exit(0); // close the application

}

}

});

The Teex Multicharacter-Set Text Editor 363

The main method was modified to take optional arguments for the LDAP URL,
user ID, and password for an LDAPPreferences1 object. If all three are provided, an
object is instantiated; otherwise a null preferences object is passed to the Teex con-
structors and no persistent preferences are used:

static public void main(String args[]) {

int i = 0;

String filePath = null;

String encoding = null;

String url = null;

String uid = null;

String password = null;

while (i < args.length) {

if (args[i].compareTo("-encoding") == 0) {

if ((i + 1) < args.length) {

encoding = args[i+1];

i ++;

}

} else if (args[i].compareTo(“-u”) == 0) {

if ((i + 1) < args.length) {

url = args[i+1];

i ++;

}

} else if (args[i].compareTo("-D") == 0) {

if ((i + 1) < args.length) {

uid = args[i+1];

i ++;

}

} else if (args[i].compareTo(“-w”) == 0) {

if ((i + 1) < args.length) {

password = args[i+1];

i ++;

}

...

Preferences prefs = null;

if ((url != null) && (password != null) && (uid != null)) {

prefs = new LDAPPreferences1(url, uid, password);

}

Teex t;

if (filePath != null) {

t = new Teex(frame, filePath, encoding, prefs);

} else {

364 Make Your Application Location-Independent

t = new Teex(frame, prefs);

}

We can now run the application and specify LDAP preferences, using the follow-
ing command:

java Teex -u “ldap://localhost:389/o=airius.com” -D dakers -w integument

The first time through there will be no preferences in the directory. But if settings
are changed, they will be saved on program exit and restored the next time the appli-
cation is run.

Saving Preferences as an Object in the Directory

Storing each preference value as a unique attribute is convenient. It is easy to use
LDAPSearch or any other LDAP client to inspect and adjust the values if necessary,
and more than one application can share certain preferences.

However, there is also a major disadvantage: whenever you add a new prefer-
ence to your application, you must define a new attribute and add it to the directory
schema. You must also modify the object class definition for the preferences object
class to include the new attribute. Generally, only privileged users have permission to
change the directory schema. With a corporate directory, application developers may
not be allowed to make random changes to the schema. There may also be problems
with interoperability if data is synchronized between the directory and other data
sources, or replicated to other directories. Every schema change must be carefully
copied to each participant in replication agreements with the server.

One way to ensure flexibility for adding new preference values in the future is to
store all values in a single object. The schema needs to be modified only once to allow
this compound attribute. LDAPPreferences2 (Figure 11-5) implements the compound
object model by serializing a Hashtable with all preferences and storing the serialized
value as a single attribute in the user entry. In other respects LDAPPreferences2 is
identical to LDAPPreferences1, so only the differences will be presented here.

LDAPPreferences2.initialize specifies a single attribute to read from the user
entry, rather than null (for all attributes):

String[] attrs = { PREFERENCES_ATTR };

// URL to read one entry

_url = new LDAPUrl(_searchUrl.getHost(),

_searchUrl.getPort(),

dn, attrs,

LDAPConnection.SCOPE_BASE,

"objectclass=*");

The Teex Multicharacter-Set Text Editor 365

Instead of multiple discrete attributes (defined by the teexPreferences object
class) being pulled out of the user entry, a single attribute is extracted. It is deserialized
into a Hashtable, and the contents are copied into the preferences object:

protected void addPropertiesFromEntry(LDAPEntry entry) {

// Get the attribute with a serialized Hashtable

LDAPAttribute attr = entry.getAttribute(PREFERENCES_ATTR);

if (attr == null) {

System.out.println(

"LDAPPreferences.addPropertiesFromEntry: " +

"no attribute - " + PREFERENCES_ATTR);

return;

}

Enumeration valsEn = attr.getByteValues();

// Get the values

if (valsEn.hasMoreElements()) {

byte[] value = (byte[])valsEn.nextElement();

Hashtable ht = null;

try {

ht = (Hashtable)deserializeObject(value);

366 Make Your Application Location-Independent

LDAPPreferences2

LDAPPreferences2()
LDAPPreferences2(url : String, userKey : String, password : String)
setUrl(url : String) : void
getUrl() : String
save() : boolean
initialize() : boolean
addPropertiesFromEntry(entry : LDAPEntry) : void
readEntry() : boolean
searchEntry() : String
copyHashtable(from : Hashtable, to : Hashtable) : void
main(args : String[]) : void

Preferences

FIGURE 11-5. LDAPPreferences2.

} catch (IOException ex) {

System.err.println(

"LDAPPreferences.addPropertiesFromEntry: " + ex);

return;

}

copyHashtable(ht, this);

} else {

System.err.println(

"LDAPPreferences.addPropertiesFromEntry: " +

"no value for attribute " + PREFERENCES_ATTR);

}

}

Similarly, when saving the preferences, all values (not just those that have
changed) are copied to a Hashtable. The Hashtable is serialized and saved as a single
attribute:

public boolean save() {

try {

Enumeration keys = getChanges().keys();

// Any changes to save?

if(!keys.hasMoreElements()) {

return true;

}

LDAPConnection ldc = new LDAPConnection();

ldc.connect(_url.getHost(), _url.getPort());

ldc.authenticate(_url.getDN(), _password);

// Copy all values to new Hashtable

Hashtable ht = new Hashtable();

copyHashtable(this, ht);

// Put it into serialized form

byte[] val;

try {

val = serializeObject(ht);

} catch (IOException ex) {

System.err.println("LDAPPreferences.save: " + ex);

return false;

}

LDAPModification mod =

new LDAPModification(

LDAPModification.REPLACE,

new LDAPAttribute(PREFERENCES_ATTR,

val));

System.out.println("LDAPPreferences.save: " + mod);

The Teex Multicharacter-Set Text Editor 367

ldc.modify(_url.getDN(), mod);

getChanges().clear();

return true;

} catch (LDAPException e) {

System.err.println("LDAPPreferences.save: " + e);

}

return false;

}

LDAPPreferences2 defines a few member variables:

public final String PREFERENCES_ATTR = "teexPreferencesObject";

private LDAPUrl _searchUrl = null; // Host, port, base DN

private LDAPUrl _url = null; // Complete URL of user entry

private String _password = null; // User password

private Hashtable _allowed = null; // Preference attributes

To begin using LDAPPreferences2 instead of LDAPPreferences1, we must do
two things:

• Add a definition of the new attribute to the directory schema

• Change one line in Teex.main to use LDAPPreferences2

We can use teexschema2.ldif to add the new attribute and modify the
teexPreferences object class definition. The old object class definition is deleted, and
then a new one is added that allows teexPreferencesObject in addition to the other
Teex attributes. We accomplish all this in a single modify operation in the LDIF file:

java LDAPModify -D “cn=directory manager” -w password -f teexschema2.ldif

The change required to Teex.main is to replace LDAPPreferences1 with
LDAPPreferences2:

prefs = new LDAPPreferences2(url, uid, password);

You can then compile Teex.java and run it from the command line, just as
before. There is no visible difference in the behavior, but after changing preferences
there is a new binary attribute in the user entry:

dn: uid=dakers, ou=People, o=airius.com

teexPreferencesObject:: rO0ABXNyABNqYXZhLnV0aWwuSGFzaHRhYmxlE7sPJSFK5LgDAAJGA

Apsb2FkRmFjdG9ySQAJdGhyZXNob2xkeHA/QAAAAAAAS3cIAAAAZQAAAAR0AAt0ZWV4dGFic2l6Z

368 Make Your Application Location-Independent

XVyAAJbQqzzF/gGCFTgAgAAeHAAAAABNHQADnRlZXhiYWNrZ3JvdW5kdXEAfgADAAAABC0yMDV0A

h0ZWV4Zm9udHVxAH4AAwAAAAdjb3VyaWVydAAJdGVleGNvbG9ydXEAfgADAAAABGJsdWV4

Using Directory Structure to Model Attributes

We lost a couple of things when we started storing attributes as a compound object:

• It is no longer possible to do a search based on the value of one of the
attributes.

• It is much more difficult to interpret the values in the user entry for debugging.

In this concluding section on user preferences we will look at a third way to store
the values. This time each preference will be stored in a separate entry under the user
entry (see Figure 11-6).

The Teex Multicharacter-Set Text Editor 369

uid = scarter

ou = People

o = Airius.com

cn = tabSize
objectclass: top
objectclass: nsValueItem
cn: tabSize
nsValueCIS: 8
nsValueType: nsValueCIS

cn = lineWrap
objectclass: top
objectclass: nsValueItem
cn: lineWrap
nsValueCIS: true
nsValueType: nsValueCIS

FIGURE 11-6. Preferences as individual entries.

We are now using special schema elements for generic attributes. The schema is
predefined in Netscape Directory Server. An entry containing one or more preference
values includes the object class nsValueItem. There are several allowed attributes for
this object class, the name of each attribute indicating its syntax. The cn value of the
entry is the name of the preference value. In Figure 11-6, the user entry for Sam Carter
has two preference entries underneath it. Each one contains a single preference value.
Both values are of type cis (“case-insensitive string”). The DN of the tabSize entry is
cn=tabSize,uid=scarter,ou=People,o=Airius.com.

Since the schema is provided with Netscape Directory Server, we don’t have to
add a schema of our own if we are using it. For a different directory, we would have to
provide the schema only once. An LDIF file is provided for this purpose:
generic.ldif. We can add new preferences by creating new entries under the user
entries, without defining additional new schema elements.

LDAPPreferences3 (Figure 11-7) is similar to LDAPPreferences1 and
LDAPPreferences2. The differences are in how preferences are read from the direc-
tory and how they are saved.

When reading preferences, we must now read all children of the user entry,
rather than reading the user entry itself:

protected boolean initialize() {

...

370 Make Your Application Location-Independent

LDAPPreferences3

LDAPPreferences3()
LDAPPreferences3(url : String, userKey : String, password : String)
setUrl(url : String) : void
getUrl() : String
save() : boolean
initialize() : boolean
addPropertiesFromEntry(entry : LDAPEntry) : void
readChildren() : boolean
searchEntry() : String
main(args : String[]) : void

Preferences

FIGURE 11-7. LDAPPreferences3.

// Search for a single matching entry

if (_url == null) {

String dn = searchEntry();

if (dn != null) {

// Found it

String[] attrs = null;

// URL to read children of this entry

_url = new LDAPUrl(_searchUrl.getHost(),

_searchUrl.getPort(),

dn, attrs,

LDAPConnection.SCOPE_ONE,

“objectclass=nsValueItem”);

System.out.println("URL: " + _url.getUrl());

}

}

// Now we know the entry containing the preferences

boolean success = readChildren();

For each child found, retrieve the preference value. The cn of the entry is the
preference name. An entry with the object class nsValueItem may have an attribute
nsValueType, which indicates the data type of the preference value. If nsValueType is
present, we use it to determine which of the possible attribute types to look for in the
entry. If it is not present, we look in turn for each of the possible types:

/**

* Get the preference values from the directory and store

* them internally

*

* @return true if the values could be read

*/

protected boolean readChildren() {

clear();

LDAPSearchResults res = null;

try {

System.out.println("LDAPPreferences.readChildren: " +

"reading " + _url.getUrl());

res = LDAPConnection.search(_url);

} catch (LDAPException e) {

System.err.println("LDAPPreferences.readChildren: " +

e);

return false;

}

while (res.hasMoreElements()) {

The Teex Multicharacter-Set Text Editor 371

try {

LDAPEntry entry = res.next();

addPropertiesFromEntry(entry);

System.out.println(

"LDAPPreferences.readChildren: found " +

entry.getDN());

} catch (LDAPException e) {

System.err.println(

"LDAPPreferences.readChildren: " + e);

continue;

}

}

return true;

}

/**

* Get the preference values from an entry and store them

* internally

*

* @param entry an LDAP entry containing preference attributes

*/

protected void addPropertiesFromEntry(LDAPEntry entry) {

// Get the name of the attribute

LDAPAttribute attr = entry.getAttribute("cn");

String name = (String)attr.getStringValues().nextElement();

Object value = null;

// Get the type of the attribute

String type = null;

if ((attr = entry.getAttribute("nsValueType")) != null) {

// Is the type specified?

type = (String)attr.getStringValues().nextElement();

if ((attr = entry.getAttribute(type)) != null) {

value = attr.getByteValues().nextElement();

}

}

// If type was not specified, look for all possible types

for(int i = 0; (value == null) && (i < ATTRS.length); i++) {

if ((attr = entry.getAttribute(ATTRS[i])) != null) {

value = attr.getByteValues().nextElement();

}

}

if (value != null) {

put(name, value);

}

372 Make Your Application Location-Independent

}

// Possible attribute types for nsValueItem

private final static String[] ATTRS = { "nsValueBin",

"nsValueCIS",

"nsValueCES",

"nsValueInt",

"nsValueDN",

"nsValueTel" };

The nsValueItem object class allows a few additional attributes to specify a
default attribute value, a description, a help URL, a syntax, and flags. We won’t be
using them in this example.

When the preferences are to be saved, an entry must be created or modified for
each new or changed preference, as the following code shows. Storing all values as
strings will allow searching based on preference values, which might be useful in a
future application.

String[] oclasses = { "top", "nsValueItem" };

while(keys.hasMoreElements()) {

String name = (String)keys.nextElement();

String value = "";

try {

value =

new String((byte[])getChanges().get(name),

"UTF8");

} catch (UnsupportedEncodingException e) {

}

// Create a DN for each preference

String dn = "cn="+name + "," + _url.getDN();

LDAPAttributeSet set = new LDAPAttributeSet();

set.add(new LDAPAttribute("objectclass",

oclasses));

// Save the value as a string

set.add(new LDAPAttribute("nsValueType",

"nsValueCIS"));

set.add(new LDAPAttribute("nsValueCIS",

value));

set.add(new LDAPAttribute("cn",

name));

LDAPEntry entry = new LDAPEntry(dn, set);

System.out.println("LDAPPreferences.save: " +

entry);

try {

The Teex Multicharacter-Set Text Editor 373

ldc.add(entry);

} catch (LDAPException ex) {

System.err.println("LDAPPreferences.save: " + ex);

// If the entry already exists, replace it

if (ex.getLDAPResultCode() ==

ex.ATTRIBUTE_OR_VALUE_EXISTS) {

LDAPModification mod =

new LDAPModification(

LDAPModification.REPLACE,

new LDAPAttribute("nsValueCIS",

value));

ldc.modify(dn, mod);

}

}

}

Change LDAPPreferences2 to LDAPPreferences3 in Teex.java and recompile
to use the new class. Again, the user cannot tell the difference, but behind the scenes
data is being saved in a new way in the directory.

Using directory structure to model preferences instead of using entry content has
several advantages:

• Preferences can be extended, deleted, or modified without schema changes.

• Adding or removing preferences does not affect replication or synchroniza-
tion partners.

• Preferences can be self-describing, have defaults, and have links to meta-
information.

• If each user has a very large number of preferences, or each preference con-
tains a lot of data, then server performance will be better if the data is split
among several entries.

There are also a couple of disadvantages:

• Users must have permission to create child entries under their own entries.
This is less of an issue for server-side applications.

• Other LDAP client applications that share the same user directory may be
confused if they find child entries under the user entries. Some applications
may assume that user entries are leaf nodes. A well-written application will
include an object class such as person or inetOrgPerson in its search filter
when looking up users to avoid confusing user entries with other entries.

374 Make Your Application Location-Independent

Conclusion

If application and user preferences are stored in a directory, they can be shared easily.
A user or application can re-create a previous state from a different location or com-
puter, as long as there is network access for LDAP. Preferences can be stored as indi-
vidual values or as a Java object. They can be identified by unique attribute names or
by using the tree structure of the directory along with metainformation. If the number
and types of preferences are variable and growing, it may be difficult to maintain
unique attributes for each type. This chapter has presented three different strategies
for storing a user’s application preferences with LDAP; determining which one is
appropriate for your application is left to you.

Conclusion 375

In Chapter 10 we developed a tree browser component for exploring directory data.
The structure of the data presented in the browser mirrored the organization of the

data in the directory. However, directory information may embody other relationships
between entries, beyond their structural organization into a tree. In this chapter we
will discuss the mechanisms for representing and interpreting these relationships,
develop components for representing a reporting hierarchy, and add a property
browser for directory entries to the collection of LDAP JavaBeans that we started in
Chapter 10.

Mirroring an Organizational Structure

When designing a directory structure for an organization, the first thing that comes to
mind is to represent each division, department, and other organizational unit in the
tree as a directory entry and to place each person entry under the department to which
the person belongs. A division entry might have many department entries as child
nodes, and a department entry might have additional department entries and/or indi-
vidual person entries underneath it.

The directory structure maps exactly to the structure of the organization, and
the DN of a person entry describes the full chain of the person’s affiliation in the orga-
nization. The structure of a particular directory content is often called a Directory
Information Tree, or DIT. Figure 12-1 illustrates a DIT that corresponds exactly to
the structure of the hypothetical corporation Acme. In Figure 12-1, Gern Farmer’s
DN is uid=gfarmer, ou=Payroll, ou=Accounting, ou=Internet Products,

o=Acme.com, which precisely identifies where Gern works.
In recent years this type of DIT has become much less commonly used, primarily

because of the difficulty of maintenance. Most organizations experience organizational

Modeling
Relationships

377

C H A P T E R 1 2

changes over time, with employees moving from one department to another or with
departments and divisions being reorganized or renamed. For large organizations,
changes such as these may be frequent enough to generate significant extra work for
the administrators who are responsible for maintaining the directory contents.

However, the new element that has definitively tipped the scales against having
the DIT mirror the organizational structure is the growing use of certificates for user
authentication. A certificate contains the owner’s DN, or at least a DN that can be
easily mapped to the user’s DN in the directory. If the DN contains the full hierarchy
of the user’s position in the organization, then any change in the hierarchy—even a
simple renaming of a department—will require revoking all the certificates of every
user in that department and issuing new ones. This is clearly not feasible.

Attributes as Pointers

To preserve organizational affiliation information while allowing for change, many
companies and institutions are now choosing a fairly flat DIT for user entries and

378 Modeling Relationships

cn: Ted Morris
uid: tmorris

o: Acme.com

ou: Household Appliances

ou: Payroll

ou: Internet Productsou: Farm Equipment

ou: Development ou: Accounting ou: Product Marketing

ou: Receivables

cn: Gern Farmer
uid: gfarmer

cn: Tobias James
uid: tjames

ou: OEM Relationships

o=Acme.com

ou=Internet Products, o=Acme.com

ou=Accounting, ou=Internet Products,
o=Acme.com

ou=Payroll, ou=Accounting,
ou=Internet Products,
o=Acme.com

uid=gfarmer, ou=Payroll,
ou=Accounting, ou=Internet Products,
o=Acme.com

FIGURE 12-1. A DIT for organizational mapping.

using attributes of the user entries to maintain the organizational relationships. All
person entries are in a single pool or a small number of pools. Each person entry has
an attribute indicating the organization to which the person belongs.

Figure 12-2 shows the Acme DIT restructured to use attributes to represent the
organizational hierarchy. In this example, all employees are in a single pool. If there is
little possibility of change between divisions, then Acme might decide to have one
pool for each division instead. With the directory organization of Figure 12-2, Gern
Farmer can change departments, or departments can change names, and all that needs
to happen to Gern’s account is that the ou attribute be updated. His DN remains
uid=gfarmer, ou=People, o=Acme.com, and his certificates are still valid.

If an application needs to represent Gern’s chain of affiliation, it cannot do so
simply by decomposing his DN; rather it must search for the entry to which his ou
attribute points. In this case, a subtree search from o=Acme.com for “ou=Payroll” will
return ou=Payroll, ou=Accounting, ou=Internet Products, o=Acme.com.

In the remainder of this chapter we will develop components that demonstrate
how to illustrate reporting relationships from directory information. Similar tech-
niques may be used to extract other types of relationships.

Attributes as Pointers 379

cn: Ted Morris
uid: tmorris
ou: Payroll

o: Acme.com

ou: Household Appliances

ou: Payroll

ou: Internet Productsou: Farm Equipmentou: People

ou: Development ou: Accounting ou: Product Marketing

ou: Receivables

cn: Gern Farmer
uid: gfarmer
ou: People

cn: Tobias James
uid: tjames
ou: People

ou: OEM Relationships

o=Acme.com

ou=Internet
Products,
o=Acme.com

ou=Accounting, ou=Internet Products,
o=Acme.com

ou=Payroll, ou=Accounting,
ou=Internet Products,
o=Acme.com

uid=gfarmer, ou=People,
o=Acme.com

FIGURE 12-2. DIT using the ou attribute to represent affiliation.

Parsing the Reporting Relationships in a Directory

The commonly used inetOrgPerson object class includes an optional attribute
manager. The ManagementParser class that will be developed in this chapter assumes
that the manager attribute is used to indicate reporting relationships.

The attribute syntax for manager is dn, and it should point to another entry in
the directory. Having dn syntax rather than cis (case-insensitive string) syntax means
that a search for a particular DN will succeed even if there is an extra space or two
after the comma that separates RDNs, because the server normalizes away differences
that are not relevant to DNs.

ManagementParser (Figure 12-3) follows the manager values as pointers to cre-
ate a tree of nodes, using the JFC class DefaultMutableTreeNode for each entry.
ManagementParser uses the following algorithm:

1. Find all person entries that do not have a manager attribute and save them in
a root list. These entries are assumed to represent either top-level executives
(with direct reports) or individuals who are not part of any organization.

2. Find all person entries that do have a manager attribute and save them in a
subordinate list. Record each manager value found in a hash table.

3. Check each manager value against the root list and the subordinate list. If
the value is not found in either list, then the directory information has not
been kept up-to-date and any person entries reporting to the manager can-
not be placed in the reporting hierarchy (we don’t know who they really
report to).

4. Starting with the members of the root list, search the subordinate list recur-
sively for all entries reporting to a particular entry.

ManagementParser has one main public method, with two variants. The first
variant of parseTree takes an active connection to a directory and a base DN as argu-
ments. The second variant takes as an additional parameter the DN of a manager. If
the DN corresponds to a directory entry, then the return value of the method will be
the node that contains the entry, rather than the top-level node or nodes found:

static public DefaultMutableTreeNode

parseTree(LDAPConnection ldc,

String base) throws LDAPException {

static public DefaultMutableTreeNode

parseTree(LDAPConnection ldc,

String base,

String rootDN) throws LDAPException {

380 Modeling Relationships

The method parseTree starts by creating an empty root node and then creating
a Hashtable of all entries that do not have a manager attribute. It prints a message
indicating the number found:

/**

* Read person entries in a directory subtree, and

* sort the results by reporting relationships

*

* @param ldc connected and authenticated LDAPConnection

* object

* @param base base DN from which to search for entries

* @param rootDN DN of the top manager node to return

* @return the root node of a tree, or null

* on failure

* @throws LDAPException on failure in searching

*/

static public DefaultMutableTreeNode

parseTree(LDAPConnection ldc,

String base,

String rootDN) throws LDAPException {

Attributes as Pointers 381

parseTree(Idc : LDAPConnection, base : String, rootDN : String) :
DefaultMutableTreeNode

parseTree(Idc : LDAPConnection, base : String) : DefaultMutableTreeNode
printTree(root : DefaultMutableTreeNode) : void
normalizeDN(dn : String) : String
createEntryNode(entry : LDAPEntry) : DefaultMutableTreeNode
getRootLevelManagers(Idc : LDAPConnection, base : String, root :

DefaultMutableTreeNode) : Hashtable
getSubordinates(Idc : LDAPConnection, base : String, managerTable :

Hashtable) : Hashtable
getValueFromEntry(entry : LDAPEntry, name : String) : String
getValueFromNode(node : DefaultMutableTreeNode, name : String) : String
getDNFromNode(node : DefaultMutableTreeNode) : String
getManagerFromEntry(entry : LDAPEntry) : String
getTitleFromEntry(entry : LDAPEntry) : String
addEntriesToTree(root : DefaultMutableTreeNode, managers : Hashtable,

managerTable : Hashtable) : DefaultMutableTreeNode
printManagers(managers : Hashtable) : void
main(args : String[]) : void

ManagementParser

FIGURE 12-3. ManagementParser.

// Get root-level managers and add them to the root;

// keep references in a Hashtable. We consider a root-

// level manager to be anyone who doesn’t have a

// manager. In reality, some of the entries without managers may be

// highly placed individual contributors, and some

// may just not have their directory info up-to-date.

DefaultMutableTreeNode root =

new DefaultMutableTreeNode();

Hashtable rootEntries =

getRootLevelManagers(ldc, base, root);

System.out.println(rootEntries.size() + " entries " +

"do not have a manager");

The getRootLevelManagers method searches for all entries that match
rootFilter, which in this case is declared as follows:

// Filter string to retrieve users not reporting to anyone

private static String _rootFilter =

"(&(objectclass=person)(!(manager=*)))";

You may need to customize _rootFilter for your site. The attributes to be
returned are declared as follows:

// Attributes to retrieve on search

private static String[] _fetchAttrs =

{ "cn", "title", "manager", "description", "ou" };

The cn value will be used to display the name of each person found. The
manager value will be used to evaluate the reporting relationships. For managers, we
would also like to display a title, so we request the title attribute. However, some
managers may not have a title value assigned, so the description and ou attributes
are requested as well, to use if there is no title value.

For each entry found, a node is created and added to the root node. In addition,
the node is added to the rootEntries Hashtable to be returned by the method. The
key for each node is the normalized DN of the entry.

/**

* Get all person entries that do not have a manager;

* assume they are top-level managers or free entities

* at the top, and add them to the root node.

*

* @param ldc active connection to directory

* @param base base DN from which to do a subtree search

382 Modeling Relationships

* @param root root node to which to add the entries found

* @return a Hashtable with all entries found

*/

static protected Hashtable

getRootLevelManagers(LDAPConnection ldc,

String base,

DefaultMutableTreeNode root)

throws LDAPException {

// Get all person entries that do not have a manager;

// assume they are top-level managers or free entities

Hashtable rootEntries = new Hashtable();

LDAPSearchConstraints cons =

ldc.getSearchConstraints();

cons.setMaxResults(0);

LDAPSearchResults res =

ldc.search(base,

ldc.SCOPE_SUB,

_rootFilter,

_fetchAttrs,

false,

cons);

while (res.hasMoreElements()) {

try {

LDAPEntry entry = res.next();

// Add this top-level manager

DefaultMutableTreeNode node =

createEntryNode(entry);

root.add(node);

rootEntries.put(

getDNFromNode(node), node);

} catch (LDAPReferralException ref) {

// Just ignore referrals

}

}

return rootEntries;

}

Next, parseTree creates a Hashtable to track all managers found (the value of
the manager attribute of all entries) and passes it to getSubordinates, which returns
a Hashtable containing nodes for all entries that have a manager attribute:

// Now get everyone who reports to someone. Some

// of them are managers themselves.

// Keep track of all managers in a Hashtable.

Attributes as Pointers 383

Hashtable managerTable = new Hashtable();

Hashtable allEntries =

getSubordinates(ldc, base, managerTable);

The method getSubordinates creates a node for each entry found and stores it
in a new Hashtable to be returned by the method. The key is the normalized DN of
the entry. It also creates a Vector for all entries reporting to a particular manager and
stores the Vector in the managers Hashtable. The search filter for finding entries with
a manager is defined as follows:

// Filter to retrieve users reporting to someone

private static String _subordinateFilter =

"(&(objectclass=person)(manager=*))";

The definition of _SubordinateFilter may need customization to work at your
site—for example, to include additional attributes that must be present or must not be
present to distinguish manager entries from nonmanager entries.

/**

* Get all entries that have a manager. Keep track of all

* referenced managers.

*

* @param ldc active connection to directory

* @param base base DN from which to do a subtree search

* @param managerTable Hashtable to store DNs and

* nodes of managers

* @return a Hashtable mapping all employee DNs to nodes

*/

static protected Hashtable

getSubordinates(LDAPConnection ldc,

String base,

Hashtable managerTable)

throws LDAPException {

LDAPSearchConstraints cons =

ldc.getSearchConstraints();

cons.setMaxResults(0);

Hashtable allEntries = new Hashtable();

// Find all person entries with a manager.

// Retrieve each one’s name, title, and manager.

LDAPSearchResults res =

ldc.search(base,

ldc.SCOPE_SUB,

_subordinateFilter,

384 Modeling Relationships

_fetchAttrs,

false,

cons);

int numReadEntries = 0;

while (res.hasMoreElements()) {

try {

// Found an entry. Normalize the DN and use it

// as the key in the allEntries Hashtable.

LDAPEntry entry = res.next();

String dn = normalizeDN(entry.getDN());

DefaultMutableTreeNode node =

createEntryNode(entry);

allEntries.put(dn, node);

// Get the manager DN and normalize it

String managerDN =

getValueFromNode(node, "manager");

// Keep track of all managers’ direct reports

Vector v =

(Vector)managerTable.get(managerDN);

if (v == null) {

v = new Vector();

}

v.addElement(node);

managerTable.put(managerDN, v);

} catch (LDAPReferralException ref) {

// Just ignore referrals

}

}

return allEntries;

}

In some organizations—and in the sample LDIF file airiusplus.ldif supplied
on the CD-ROM that accompanies this book—all manager information is always up-
to-date, and all person entries except for those of the top executives have a manager
attribute. However, that is not the case for many real-life organizations. The next
thing parseTree does is to validate all the entries from the rootEntries table against
the table of managers. If an entry is not found, the user corresponding to the entry nei-
ther has a manager nor has anyone reporting to her (if the directory data is to be
believed):

// Check how many root-level entries really are

// managers

int nRootManagers = 0;

Attributes as Pointers 385

Enumeration en = rootEntries.keys();

while(en.hasMoreElements()) {

String dn = (String)en.nextElement();

if (managerTable.containsKey(dn)) {

nRootManagers++;

}

}

System.out.println(nRootManagers + " top-level " +

"managers found");

System.out.println(allEntries.size() + " people " +

"who report to someone");

Person entries that report a manager who is not in the directory cannot be
processed. Perhaps the manager is no longer with the organization, but the entries of
her direct reports have not been updated to reflect the change by pointing to a differ-
ent manager, or perhaps a data entry error occurred during creation or updating of the
person entries. Code within the following section of parseTree prints out all such
invalid managerial relationships, but this code is commented out. It may be useful to
enable this code when debugging inconsistent directory contents.

// Remove any invalid manager pointers

int nInvalid = 0;

en = managerTable.keys();

while(en.hasMoreElements()) {

String dn = (String)en.nextElement();

// If the manager DN doesn’t exist in either the

// root manager table or the subordinates table,

// then we can’t place any subordinates with that

// manager.

if (!allEntries.containsKey(dn) &&

!rootEntries.containsKey(dn)) {

// System.err.println("No manager found: " +

// dn + "; had these " +

// "reports: ");

// Vector v = (Vector)managerTable.get(dn);

// for(int i = 0; i < v.size(); i++) {

// DefaultMutableTreeNode node =

// (DefaultMutableTreeNode)v.elementAt(i);

// System.out.println(

// " " + getDNFromNode(node));

// }

nInvalid++;

386 Modeling Relationships

managerTable.remove(dn);

}

}

System.out.println(nInvalid + " managers no " +

"longer present");

The managers table will map DNs to nodes. It is used later to select a node to
return to the caller, if the caller used the second variant of parseTree. The method
addEntriesToTree is called for each top-level node (under the virtual root node), to
recursively add all entries from managerTable that report to the user corresponding to
the node:

// Create a cross-reference from DNs to nodes

Hashtable managers = new Hashtable();

// Add all subordinates to tree

en = root.children();

while(en.hasMoreElements()) {

DefaultMutableTreeNode node =

(DefaultMutableTreeNode)en.nextElement();

addEntriesToTree(node, managers,

managerTable);

}

The method addEntriesToTree extracts the DN of the root node it receives and
looks in the managerTable Hashtable for any nodes pointing to it. If there are any
direct reports, a Vector is obtained from the table and each member of the Vector is
added to the root node. If a member is listed in managerTable, then it has direct reports
itself, so addEntriesToTree calls itself recursively to add all reports of that member.

The method can print out statistics on the relationships found for each node, but
the relevant code is commented out in the block of code that follows. It may be useful
to enable the printouts if you are having trouble interpreting the hierarchy found by
the class, but the printouts are voluminous.

/**

* Add all entries in a Hashtable to a tree, sorting by

* manager

*

* @param root the root node of the tree to add to. If it

* is null, it is allocated in the method.

* @param toAdd a Hashtable of directory entries

* @param managers a Hashtable that on return maps DNs

* to tree nodes

* @return the root node of the tree

Attributes as Pointers 387

*/

static protected DefaultMutableTreeNode addEntriesToTree(

DefaultMutableTreeNode root,

Hashtable managers,

Hashtable managerTable) {

int childLess = 0;

int childRich = 0;

// Get all entries that have this manager

String dn = getDNFromNode(root);

Vector v = (Vector)managerTable.get(dn);

if (v != null) {

Enumeration children = v.elements();

while(children.hasMoreElements()) {

DefaultMutableTreeNode nextNode =

(DefaultMutableTreeNode)

children.nextElement();

String childDN = getDNFromNode(nextNode);

// Recurse if this node is a manager

if (managerTable.containsKey(childDN)) {

childRich++;

addEntriesToTree(nextNode,

managers,

managerTable);

} else {

childLess++;

}

// Add this child to the tree

root.add(nextNode);

}

// Update manager Hashtable to point to this

// node for the DN

managers.put(dn, root);

}

// System.out.println(dn + " has " + childRich +

// " managers and " + childLess +

// " non-managers reporting");

return root;

}

At this point we have the entire directory contents represented in a tree of
DefaultMutableTreeNode objects. The only thing left to do is to decide which node to
return to the caller:

388 Modeling Relationships

if (rootDN != null) {

rootDN = normalizeDN(rootDN);

Object o = managers.get(rootDN);

return (DefaultMutableTreeNode)o;

} else {

return root;

}

}

You can have ManagementParser print the tree it has constructed to standard
output. If you have installed the airiusplus.ldif file on your server, you will see a
printout as in Figure 12-4. The higher a manager is in the hierarchy, the more indented
her DN is in the display.

ManagementParser includes several internal utility methods. For example, a DN
is normalized and changed to all lowercase with normalizeDN:

Attributes as Pointers 389

FIGURE 12-4. Tree printout from ManagementParser.

java ManagementParser-b "o=airius.com"

1 entries do not have a manager

1 top-level managers found

149 people who report to someone

0 managers no longer present

uid=tmorris, ou=people, o=airius.com

uid=dmiller, ou=people, o=airius.com

uid=gfarmer, ou=people, o=airius.com

uid=jwallace, ou=people, o=airius.com

...

uid=phun2, ou=people, o=airius.com

uid=dcope, ou=people, o=airius.com

uid=charvey, ou=people, o=airius.com

uid=alangdon, ou=people, o=airius.com

uid=bparker, ou=people, o=airius.com

uid=cnewport, ou=people, o=airius.com

uid=kwinters, ou=people, o=airius.com

uid=jvedder, ou=people, o=airius.com

/**

* Normalize a DN (spacing)

*

* @param dn String to be normalized

* @return a normalized DN String

*/

static protected String normalizeDN(String dn) {

return new DN(dn).toString().toLowerCase();

}

The createEntryNode method in the following block of code creates a node
from an LDAPEntry. The UserObject of a node is a Hashtable that contains various
attribute values of the entry. If additional attributes are to be tracked and rendered
using the nodes, then the fetchAttrs list should be extended and createEntryNode
modified to store them.

/**

* Create a tree node from info in an entry

*

* @param entry a directory entry with "cn" and optionally

* also "title"

* @return a tree node

*/

static protected DefaultMutableTreeNode createEntryNode(

LDAPEntry entry) {

String mgr = normalizeDN(

getManagerFromEntry(entry));

String name = getValueFromEntry(entry, "cn");

String title = getTitleFromEntry(entry);

String dn = normalizeDN(entry.getDN());

Hashtable ht = new Hashtable();

if (name != null) {

ht.put("name", name);

}

if (title != null) {

ht.put("title", title);

}

if (mgr != null) {

ht.put("manager", mgr);

}

ht.put("dn", dn);

return new DefaultMutableTreeNode(ht);

}

390 Modeling Relationships

In addition, utility methods extract values from an LDAPEntry or from a node:

/**

* Get a single String attribute value from an entry

*

* @param entry a directory entry

* @param name name of the attribute

* @return the attribute value, or null if

* the attribute is not present

*/

static protected String getValueFromEntry(LDAPEntry entry,

String name) {

// Get the value from the entry

LDAPAttribute attr = entry.getAttribute(name);

if (attr != null) {

Enumeration en = attr.getStringValues();

if ((en != null) && en.hasMoreElements()) {

return (String)en.nextElement();

}

}

return null;

}

/**

* Get a single String attribute value from a node

*

* @param node a tree node

* @param name name of the attribute

* @return the attribute value, or null if

* the attribute is not present

*/

static protected String getValueFromNode(

DefaultMutableTreeNode node,

String name) {

Hashtable nodeEntry =

(Hashtable)node.getUserObject();

if(nodeEntry == null) {

return null;

}

return (String)nodeEntry.get(name);

}

/**

* Get the DN from a node

Attributes as Pointers 391

*

* @param node a tree node

* @return the DN value, or null if

* the node doesn’t have values

*/

static protected String

getDNFromNode(DefaultMutableTreeNode node) {

return getValueFromNode(node, "dn");

}

/**

* Get the manager DN from an entry

*

* @param entry a directory entry

* @return the manager DN value, or null if

* the manager attribute is not present

*/

static protected String

getManagerFromEntry(LDAPEntry entry) {

// Get the manager DN from the entry

return getValueFromEntry(entry, "manager");

}

/**

* Get a title value from an entry

*

* @param entry a directory entry

* @return String to use for title

*/

static protected String

getTitleFromEntry(LDAPEntry entry) {

for(int i = 0; i < _titleAttrs.length; i++) {

String val =

getValueFromEntry(entry, _titleAttrs[i]);

if (val != null) {

return val;

}

}

return _defaultTitle;

}

An Alternative Strategy for Management Parsing

The CD-ROM that accompanies this book includes an alternative class for parsing
the management relationships: ManagementParser2 (see Figure 12-5). It builds the

392 Modeling Relationships

tree of nodes by starting at the top and doing a search at each node for entries that
have the node as a manager, rather than doing a single search and then parsing the
relationships in memory, as is done in ManagementParser. The intention is to demon-
strate a top-down, search-as-you-go algorithm.

ManagementParser2.parseTree starts off just as ManagementParser: by creat-
ing a table of all top-level nodes. Then it searches for all person entries that have a
manager attribute, as in ManagementParser, but it keeps only the table of managers
and not the table of all employees:

// Now get all managers

Hashtable managerTable = getAllManagers(ldc, base);

The method getAllManagers is interested in only the manager attribute of each
entry:

// Filter string to retrieve users with a manager

private static String _managerFilter =

"(&(objectclass=person)(manager=*))";

...

Attributes as Pointers 393

$ nSearches : int = 0

parseTree(Idc : LDAPConnection, base : String, rootDN : String) :
DefaultMutableTreeNode

parseTree(Idc : LDAPConnection, base : String) : DefaultMutableTreeNode
printTree(root : DefaultMutableTreeNode) : void
normalizeDN(dn : String) : String
createEntryNode(entry : LDAPEntry) : DefaultMutableTreeNode
getRootLevelManagers(Idc : LDAPConnection, base : String, root :

DefaultMutableTreeNode) : Hashtable
getAllManagers(Idc : LDAPConnection, base : String) : Hashtable
addSubordinates(Idc : LDAPConnection, base : String, root :

DefaultMutableTreeNode, managerTable : Hashtable) : void
getValueFrom Entry(entry : LDAP Entry, name : String) : String
getValueFrom Node(node : DefaultMutableTreeNode, name : String) : String
getDNFromNode(node : DefaultMutableTreeNode) : String
getManagerFromEntry(entry : LDAPEntry) : String
getTitleFromEntry(entry : LDAPEntry) : String
createManagerFilter(mgr : String) : String
printManagers(managers : Hashtable) : void

ManagementParser2

FIGURE 12-5. ManagementParser2.

/**

* Get all managers by searching for all entries that

* have a manager attribute.

*

* @param ldc active connection to directory

* @param base base DN from which to do a subtree search

* @return a Hashtable with all manager DNs found

*/

static protected Hashtable

getAllManagers(LDAPConnection ldc,

String base)

throws LDAPException {

// Get all person entries that have a manager

Hashtable managers = new Hashtable();

LDAPSearchConstraints cons =

(LDAPSearchConstraints)ldc.getSearchConstraints().

clone();

cons.setMaxResults(0);

LDAPSearchResults res =

ldc.search(base,

ldc.SCOPE_SUB,

_managerFilter,

new String[] { "manager" },

false,

cons);

while (res.hasMoreElements()) {

try {

LDAPEntry entry = res.next();

// Extract the manager value

String mgr =

normalizeDN(getManagerFromEntry(entry));

managers.put(mgr, mgr);

} catch (LDAPReferralException ref) {

// Just ignore referrals

}

}

return managers;

}

To create the tree of nodes recursively, ManagementParser2.addSubordinates
searches at each node for any entries pointing to it, if the node is known to be a man-
ager node from the previous step. A static variable, nSearches, keeps track of the
number of search operations completed:

394 Modeling Relationships

/**

* Get all entries that have a manager. Keep track of all

* referenced managers.

*

* @param ldc active connection to directory

* @param base base DN from which to do a subtree search

* @param managerTable Hashtable to store DNs and

* nodes of managers

* @return a Hashtable mapping all employee DNs to nodes

*/

static protected void

addSubordinates(LDAPConnection ldc,

String base,

DefaultMutableTreeNode root,

Hashtable managerTable)

throws LDAPException {

// Get all entries that have this manager

String dn = getDNFromNode(root);

LDAPSearchConstraints cons =

(LDAPSearchConstraints)ldc.getSearchConstraints().

clone();

cons.setMaxResults(0);

// Find all person entries with this manager.

// Retrieve each one’s name, title, and manager.

LDAPSearchResults res =

ldc.search(base,

ldc.SCOPE_SUB,

createManagerFilter(dn),

_fetchAttrs,

false,

cons);

nSearches++;

while (res.hasMoreElements()) {

try {

// Found an entry. Check if it is a manager.

LDAPEntry entry = res.next();

String childDN = normalizeDN(entry.getDN());

DefaultMutableTreeNode node =

createEntryNode(entry);

// Recurse if this is a manager

if (managerTable.containsKey(childDN)) {

addSubordinates(ldc, base, node,

Attributes as Pointers 395

managerTable);

}

root.add(node);

} catch (LDAPReferralException ref) {

// Just ignore referrals

}

if (numReadEntries == 0) {

managerTable.put(dn, root);

}

}

}

The end results are the same as with ManagementParser, but performance is
much worse if the organization contains a large number of managers, since each one is
searched separately against the directory. However, the technique used here—progres-
sively expanding the tree by doing a search—is useful in many cases. If an application
expands a subtree lazily (only when a user clicks on a particular node, for example),
then the technique may be efficient.

An Organizational Chart Tree Component

In Chapter 10 we used the JTree component from JFC to render the relationships of
directory entries. JTree takes a DefaultMutableTreeNode as parameter, so we can use
the output of ManagementParser.parseTree (or ManagementParser2.parseTree) to
render reporting relationships with no effort. However, we would like to display the
title of each manager along with the name inside a box, and we would like a tooltip to
show the full DN of a node when a user places the cursor over it.

OrgChartTreeCellRenderer (Figure 12-6) replaces the default renderer for
nodes. It contains a label for an icon, some space below it, and below that a compo-

396 Modeling Relationships

_cell : TreeCell

OrgChartTreeCellRenderer()
getTreeCellRendererComponent(tree : JTree, value : Object, isSelected :

boolean, expanded : boolean, leaf : boolean, row : int, hasFocus:
boolean) : Component

getPreferredSize() : Dimension
setBackground(color : Color) : void

OrgChartTreeCellRenderer

FIGURE 12-6. OrgChartTreeCellRenderer.

nent that will either display just the name of the person to which the node corre-
sponds, or a name and title inside a box:

public class OrgChartTreeCellRenderer extends JPanel

implements TreeCellRenderer {

/**

* Default constructor

*/

public OrgChartTreeCellRenderer() {

// Icon, and under that a TreeCell

setLayout(new BoxLayout(this,BoxLayout.X_AXIS));

_icon = new JLabel() {

public void setBackground(Color color) {

if(color instanceof ColorUIResource) {

color = null;

}

super.setBackground(color);

}

};

add(_icon);

add(Box.createHorizontalStrut(4));

add(_cell = new TreeCell());

}

A TreeCellRenderer is required to provide only one public method—
getTreeCellRendererComponent—to produce a component to display for a particu-
lar node. In this case the code for the method is completely standard except for setting
a tooltip for the node based on information in the user object of the node:

/**

* TreeCellRenderer interface implementation

*/

public Component getTreeCellRendererComponent(

JTree tree,

Object value,

boolean isSelected, boolean expanded,

boolean leaf, int row, boolean hasFocus) {

setEnabled(tree.isEnabled());

_cell.setValue(value);

_cell.setSelected(isSelected);

_cell.setFocus(hasFocus);

if (leaf) {

Attributes as Pointers 397

_icon.setIcon(UIManager.getIcon("Tree.leafIcon"));

} else if (expanded) {

_icon.setIcon(UIManager.getIcon("Tree.openIcon"));

} else {

_icon.setIcon(UIManager.getIcon("Tree.closedIcon"));

}

DefaultMutableTreeNode node =

(DefaultMutableTreeNode)value;

Hashtable info = (Hashtable)node.getUserObject();

setToolTipText((String)info.get("dn"));

return this;

}

The renderer must also override JLabel.getPreferredSize, or the manager
boxes will be truncated on the right:

/**

* Calculate the size required as the sum of the icon and

* the TreeCell

*

* @return the combined size of the icon and TreeCell

*/

public Dimension getPreferredSize() {

Dimension iconD = _icon.getPreferredSize();

Dimension cellD = _cell.getPreferredSize();

int height = Math.max(iconD.height, cellD.height);

return new Dimension(iconD.width + cellD.width, height);

}

The TreeCell class (Figure 12-7) is responsible for rendering all text, as well as a
box if the node corresponds to a manager:

/**

* Panel containing name and title

*/

class TreeCell extends JPanel {

TreeCell() {

setLayout(new BoxLayout(this, BoxLayout.Y_AXIS));

setOpaque(true);

}

The main overridden method in TreeCell is setValue. Information is pulled
from the user object of the node to set the name and title. The title is rendered in ital-
ics. The member variable _lines keeps track of how many lines of text have been ren-

398 Modeling Relationships

dered. It is used to determine the size of the node and later to decide if a box is
required around the text:

/**

* Set the text contents and fonts based on info in the

* user object of the tree node

*

* @param o a tree node with a Hashtable as UserObject

*/

public void setValue(Object o) {

DefaultMutableTreeNode node =

(DefaultMutableTreeNode)o;

Hashtable info = (Hashtable)node.getUserObject();

int maxWidth = 0;

int height = 0;

_lines = 0;

removeAll();

JLabel label =

new JLabel((String)info.get("name"));

add(label);

Dimension dim = label.getPreferredSize();

height += dim.height;

if (maxWidth < dim.width) {

maxWidth = dim.width;

}

_lines++;

// Check if this is a container node

if (node.getChildCount() > 0) {

Attributes as Pointers 399

_lines : int = 0

TreeCell()
setBackground(color : Color) : void
setPreferredSize(d : Dimension) : void
getPreferredSize() : Dimension
setValue(o : Object) : void
setSelected(isSelected : boolean) : void
setFocus(hasFocus : boolean) : void

TreeCell
 (from OrgChartTreeCellRenderer)

FIGURE 12-7. TreeCell.

label =

new JLabel((String)info.get("title"));

add(label);

dim = label.getPreferredSize();

height += dim.height;

if (maxWidth < dim.width) {

maxWidth = dim.width;

}

// Same font but italics for title

Font font = label.getFont();

font = new Font(font.getName(), font.ITALIC,

font.getSize());

label.setFont(font);

_lines++;

}

int margin = (_lines > 1) ? 2 : 0;

setPreferredSize(

new Dimension(maxWidth + 6 + 2*margin,

height + 2*margin));

}

TreeCell.setFocus is called by
OrgChartTreeCellRenderer.getTreeCellRendererComponent. If the node corre-
sponds to a manager node (more than one line of text), it always applies a black border.
If not, it uses the standard border color if the node has focus and no border if it doesn’t:

/**

* Set the appropriate visuals for if the item has focus

* or not.

*

* @param hasFocus true if the item has

* focus

*/

protected void setFocus(boolean hasFocus) {

int lineWidth = 1;

// Put a black border around the cell if it contains

// more than one line (i.e., it contains a title)

if (_lines > 1) {

setBorder(BorderFactory.createLineBorder(

Color.black, lineWidth));

} else {

if (hasFocus) {

Color lineColor =

UIManager.getColor(

400 Modeling Relationships

"Tree.selectionBorderColor");

setBorder(BorderFactory.createLineBorder(

lineColor));

} else {

setBorder(BorderFactory.createEmptyBorder(

1,1,1,1));

}

}

}

OrgChartTree (Figure 12-8) is a driver class for displaying a tree using
ManagementParser and OrgChartTreeCellRenderer. It extends JTree, and it takes
DefaultMutableTreeNode as a constructor argument and passes it to the JTree
superclass constructor.

To handle the case in which there is a virtual root node (that is, more than one
top-level node), OrgChartTree hides the root node if it doesn’t contain a user object.
Then it sets its cell renderer, and it is ready to go. It can be placed and displayed just as
any other JTree:

public class OrgChartTree extends JTree {

/**

* Constructor

*

* @param root root node of a tree of DefaultMutableTreeNode

*/

public OrgChartTree(DefaultMutableTreeNode root) {

super(root);

if (root.getUserObject() == null) {

// Must be a virtual root

setRootVisible(false);

}

Attributes as Pointers 401

$ _debug : boolean = false

OrgChartTree(root : DefaultMutableTreeNode, Idc : LDAPConnection)
enableToolTips(state : boolean) : void
main(args : String[]) : void

OrgChartTree

FIGURE 12-8. OrgChartTree.

setCellRenderer(new OrgChartTreeCellRenderer());

}

JTree doesn’t normally display tooltips, so OrgChartTree provides a method to
turn them on or off. Tooltips are truncated by the frame of the application or applet,
and DNs tend to be long. If the tree is to be displayed in a small window, it may be
visually more appealing to turn the tooltips off.

/**

* Enable or disable tooltips

*

* @param state true to enable tooltips

*/

public void enableToolTips(boolean state) {

ToolTipManager mgr = ToolTipManager.sharedInstance();

if (state) {

// Enable tooltips

mgr.registerComponent(this);

} else {

mgr.unregisterComponent(this);

}

}

The main method parses command-line arguments, creates and connects an
LDAPConnection object, and then uses ManagementParser to create a tree of directory
nodes:

// Get a tree of users, organized by reporting

// structure

DefaultMutableTreeNode root = null;

try {

root = ManagementParser.parseTree(ldc, base,

rootDN);

} catch (LDAPException e) {

System.err.println(e);

System.exit(1);

}

The root node returned by ManagementParser is then provided to the consructor
OrgChartTree, the top-level node is expanded, tooltips are enabled, and the tree is
displayed in a dialog box:

// Create a tree component with the nodes found

OrgChartTree tree = new OrgChartTree(root, ldc);

402 Modeling Relationships

tree.expandPath(tree.getPathForRow(0));

tree.enableToolTips(true);

// Create frame

Dimension dim = new Dimension(300, 400);

new SimpleDialog("OrgChartTree " + base, tree, 0, 0,

dim, true).show();

The command-line options are as follows:

OrgChartTree -b BASEDN [-D AUTHDN] [-w AUTHPASSWORD]

[-r ROOTMANAGERDN] [-h HOST] [-p PORT]

If you have a server running on your local machine at port 389, and you have
installed the airiusplus.ldif file supplied on the CD-ROM that accompanies this
book, you can display the tree with the following command:

java OrgChartTree -b "o=airius.com"

The tree shown in Figure 12-9 will be displayed.

Attributes as Pointers 403

FIGURE 12-9. OrgChartTree.

The tree can be expanded to display any part of the organization, as illustrated
in Figure 12-10.

A More Traditional Organizational Chart Component

The vertical tree view takes a little getting used to as an organizational chart. In
addition to OrgChartTree, the CD-ROM that accompanies this book contains
OrgChartPanel (Figure 12-11), a JPanel with nested vertically and horizontally ori-
ented panels to render a hierarchy in a more familiar way.

The OrgChart class is a driver application for the panel. Its main method
parses command-line parameters and invokes ManagementParser.parseTree in the
same way as OrgChartTree does, but then it creates an OrgChartPanel instead of a
JTree:

404 Modeling Relationships

FIGURE 12-10. Expanded OrgChartTree.

// Get a tree of users, organized by reporting structure

DefaultMutableTreeNode root = null;

try {

root = ManagementParser.parseTree(_ldc, base, rootDN);

} catch (LDAPException e) {

System.err.println(e);

System.exit(1);

}

// Create a panel component with the nodes found

OrgChartPanel org = new OrgChartPanel(root);

Attributes as Pointers 405

_boxBorderWidth : int = 1
$ _debug : boolean = false

OrgChartPanel()
OrgChartPanel(root : DefaultMutableTreeNode)
addChild(node : DefaultMutableTreeNode, parentPanel : JPanel,

leafPanel : JPanel, expanded : boolean) : void
setRootNode(root : DefaultMutableTreeNode) : void
getRootNode() : DefaultMutableTreeNode
getManagerTextColor() : Color
setManagerTextColor(color : Color) : void
getSubordinateTextColor() : Color
setSubordinateTextColor(color : Color) : void
getExpandedBoxColor() : Color
setExpandedBoxColor(color : Color) : void
getCollapsedBoxColor() : Color
setCollapsedBoxColor(color : Color) : void
getBoxBorderColor() : Color
setBoxBorderColor(color : Color) : void
getBoxBorderWidth() : int
setBoxBorderWidth(width : int) : void
updateProperties(comp : Component) : void
addActionListener(l : ActionListener) : void
removeActionListener(l : ActionListener) : void
fireActionPerformed(e : ActionEvent) : void
actionPerformed(e : ActionEvent) : void
createHorizontalPane() : HorizontalPanel
createVerticalPanel() : VerticalPanel
createLeafPanel() : JPanel

OrgChartPanel

FIGURE 12-11. OrgChartPanel.

The panel is then displayed in a dialog box in the same way that OrgChartTree
displays its JTree. Manager boxes have a different color and a different tooltip when
expanded and when collapsed. To expand a box, you click on it. The initial view when
using airiusplus.ldif shows only the single top-level node, as in Figure 12-12.
Tooltips display the DNs of each node. Display the organizational chart with the fol-
lowing command:

java OrgChart -b "o=airius.com"

Nonmanagers reporting to each manager are listed vertically, to the right of any re-
porting managers. Any individuals who have neither a manager nor anyone reporting to
them appear in a vertical listing to the right of any top-level managers (see Figure 12-13).

OrgChartPanel offers several properties for customization, shown in Table 12-1,
to be accessed using the standard JavaBean conventions of getProperty and
setProperty. It also provides an interface for ActionListeners to be notified when a
user clicks on any name. We will get back to this interface later in the chapter.

406 Modeling Relationships

FIGURE 12-12. Initial view of OrgChart.

TABLE 12-1. OrgChartPanel properties.

PROPERTY NAME DESCRIPTION

managerTextColor Color of the text in a manager box

subordinateTextColor Color of the labels for nonmanagers

expandedBoxColor Color of the manager boxes when expanded

collapsedBoxColor Color of the manager boxes when collapsed

boxBorderColor Color of the borders of manager boxes

boxBorderWidth Width in pixels of the borders of manager boxes

Attributes as Pointers 407

FIGURE 12-13. OrgChart with a few nodes expanded.

Inspecting Properties of an Entry

Regardless of how a tree or a list of directory entries is organized or displayed, indi-
vidual attributes of an entry often need to be examined and sometimes updated. The
CD-ROM that accompanies this book includes a component (PropertyTable) that
extends JTable and can be used to display the contents of a directory entry.

Unlike most relational data views, a directory view of an entry must be able to
present multiple values for a single attribute. It should also be able to display
odd-sized data elements, such as the jpegPhoto attribute of a user, and not just text
values. The JFC component JTable is severely limited in both regards. It does not
allow for variable-height rows or provide for concatenating adjacent table cells (as we
would like to do for the name field of each attribute when the attribute has multiple
values).

PropertyTable builds on FlexibleTable (also included on the CD-ROM),
which extends JTable in addressing these two issues, as well as in providing individ-
ual font, background color, and foreground color properties for each table cell.
FlexibleTable builds on code developed by Nobuo Tamemasa and made available
by him at http://www.codeguru.com/java/. Tamemasa’s implementation supports
coalescing table cells and applying individual properties to each cell. FlexibleTable
incorporates these improvements, adds support for variable row height, and addresses
a few bugs in the initial implementation at the CodeGuru Web site in the code for
dynamically adding rows to the table.

PropertyTable is a FlexibleTable (Figure 12-14) that populates itself with
data from a directory entry. The most useful constructor takes an LDAP connection
and a DN as parameters and uses the connection to populate the table from the entry
corresponding to the DN.

The data is supplied to the table by an LDAPTableModel object (Figure 12-15).
LDAPTableModel extends FlexibleTableModel, which extends DefaultTableModel:

/**

* Constructor to read content from a directory

* entry

*

* @param ldc an active directory connection

* @param dn DN of the entry to read

*/

public PropertyTable(LDAPConnection ldc, String dn) {

this(new LDAPTableModel(ldc, dn));

_ldc = ldc;

_dn = dn;

}

408 Modeling Relationships

Attributes as Pointers 409

FlexibleTable(model : TableModel)
getVariableCellRect(row : int, column : int, include Spacing :

boolean) : Rectangle
getCellRect(row : int, column : int, includeSpacing :

boolean) : Rectangle
adjustRowColumn(corner : int[], cellAtt : CellAttribute, doBoth :

boolean) : void
rowColumnAtPoint(point : Point) : int[]
rowAtPoint(point : Point) : int
columnAtPoint(point : Point) : int
columnSelectionChanged(e : ListSelectionEvent) : void
valueChanged(e : ListSelectionEvent) : void
tableChanged(e : TableModelEvent) : void
tableRowsInserted(e : TableModelEvent) : void
tableRowsDeleted(e : TableModelEvent) : void
getRowHeight(row : int) : int
setRowHeight(row : int, height : int) : void
resetRowHeight(row : int) : void
resetRowHeight() : void
dumpCellSpans() : void

$ _colWidths[] : int = {150,320}
_toolTipsEnabled : boolean = false

PropertyTable()
PropertyTable(model : TableModel)
PropertyTable(ldc : LDAPConnection, dn : String)
initialize() : void
setDN(dn : String) : void
getDN() : String
setLDAPConnection(ldc : LDAPConnection) : void
getLDAPConnection() : LDAPConnection
setToolTipsEnabled(on : boolean) : void
getToolTipsEnabled() : boolean
isCellEditable(row : int, column : int) : boolean
getToolTipCell(event : MouseEvent) : int[]
getToolTipText(event : MouseEvent) : String
getToolTipLocation(event : MouseEvent) : Point
setColumnWidths(widths : int[]) : int
main(args : String[]) : void

PropertyTable

FlexibleTable

FIGURE 12-14. FlexibleTable and PropertyTable.

The class has a setDN method to change the DN. Calling setDN results in the
internal creation of a new data model and repopulation of the table. A single table
object can be quickly refreshed with new directory data in this way:

/**

* Set the DN of the model; repopulate the table from

* the specified directory entry

*

* @param dn the DN of the entry to read

*/

public void setDN(String dn) {

setModel(new LDAPTableModel(_ldc, dn));

initialize();

}

410 Modeling Relationships

FlexibleTableModel()
FlexibleTableModel(numRows : int, numColumns : int)
FlexibleTableModel(columnNames : Vector, numRows : int)
FlexibleTableModel(columnNames : Object[], numRows : int)
FlexibleTableModel(data : Vector, columnNames : Vector)
FlexibleTableModel(data : Object[][], column Names : Object[])
setsDataVector(newData : Vector, columnNames : Vector) : void
addColumn(columnName : Object, columnData : Vector) : void
addRow(rowData : Vector) : void
insertRow(row : int, rowData : Vector) : void
getCellAttribute() : CellAttribute
setCellAttribute(newCellAtt : CellAttribute) : void

LDAPTableModel(ldc : LDAPConnection, dn : String)
setDN(dn : String) : void
combineRows(row : int, col : int, nRows : int) : void

LDAPTableModel

FlexibleTableModel

FIGURE 12-15. FlexibleTableModel and LDAPTableModel.

PropertyTable allows the default column widths to be changed with
setColumnWidths. An individual row height can be set with the setRowHeight
method of FlexibleTable.

All the action in LDAPTableModel is in the setDN method, which reads data from
the directory in the usual way but puts the results in a Vector of Vectors (one for
each row), which is the format used by the JFC DefaultTableModel:

/**

* Reads and parses directory entry

*

* @param dn DN of entry to read

*/

public void setDN(String dn) {

if (_ldc == null) {

System.err.println("No LDAP connection");

return;

}

_dn = dn;

if (_dn == null) {

return;

}

try {

LDAPEntry entry = _ldc.read(dn);

Enumeration attrs =

entry.getAttributeSet().getAttributes();

// Starting row of the next attribute

int row = 0;

while(attrs.hasMoreElements()) {

LDAPAttribute attr =

(LDAPAttribute)attrs.nextElement();

int nVals = 0;

Enumeration vals = attr.getStringValues();

while((vals != null) &&

vals.hasMoreElements()) {

// Each table row is a Vector with two

// elements

Vector v = new Vector();

v.addElement(attr.getName());

v.addElement((String)vals.nextElement());

nVals++;

addRow(v);

}

// Combine the name column for all values of

Attributes as Pointers 411

// the same attribute

if (nVals > 1) {

combineRows(row, 0, nVals);

}

row += nVals;

}

} catch (LDAPException e) {

System.err.println("LDAPTableModel.setDN: " + e);

}

}

The only unusual thing here is that if an attribute has more than one value, the
table cells for the name of the attribute are combined into one, using the CellAttribute
object of the model. A CellAttribute object (see Figure 12-16) manages the colors

412 Modeling Relationships

ROW : int = 0
COLUMN : int = 1

addColumn() : void
addRow() : void
insertRow(row : ins) : void
getSize() : Dimension
setSize(size : Dimension) : void
getFont(row : int, column : int) : Font
setFont(font : Font, row : int, column : int) : void
setFont(font : Font, rows : int[], columns : int[]) : void
getSpan(row : int, column : ins) : int[]
setSpan(span : int[], row : int, column : int) : void
isVisible(row : int, column : int) : boolean
combine(rows : int[], columns : int[]) : void
split(row : int, column : int) : void
getForeground(row : int, column : int) : Color
setForeground(color : Color, row : int, column : ins) : void
setForeground(color : Color, rows : int[], columns : int[]) : void
getBackground(row : int, column : int) : Color
setBackground(color : Color, row : int, column : int) : void
setBackground(color : Color, rows : int[], columns : int[]) : void
getDefaultFont() : Font
setDefaultFont(font : Font) : void
getDefaultBackground() : Color
setDefaultBackground(color : Color) : void
getDefaultForeground() : Color
setDefaultForeground(color : Color) : void

«Interface»
CellAttribute

FIGURE 12-16. CellAttribute.

and fonts of individual cells of a model and controls which cells are to be treated as a
single, merged cell:

/**

* Ask the CellAttribute of this model to combine several

* table cell rows into one

*

* @param row starting row

* @param col column to combine

* @param nRows number of row cells to combine

*/

protected void combineRows(int row, int col, int nRows) {

CellAttribute cellAtt =

(CellAttribute)getCellAttribute();

int[] r = new int[nRows];

for(int i = 0; i < nRows; i++) {

r[i] = row + i;

}

int[] c = { col };

cellAtt.combine(r, c);

}

PropertyTable has a main method that parses command-line arguments, creates
and connects an LDAPConnection object, and then creates a PropertyTable. It sets
the font of the left column (attribute names) to bold and then displays the table in a
dialog box:

PropertyTable table = null;

// Connect to server

LDAPConnection ldc = new LDAPConnection();

try {

ldc.connect(host,

port,

authDN,

authPassword);

table = new PropertyTable(ldc, dn);

// Bold for attribute names

FlexibleTableModel m =

(FlexibleTableModel)table.getModel();

CellAttribute cellAtt =

(CellAttribute)m.getCellAttribute();

Font font = cellAtt.getFont(0, 0);

font = new Font(font.getName(), font.BOLD,

Attributes as Pointers 413

font.getSize());

for(int j = 0; j < m.getRowCount(); j++) {

cellAtt.setFont(font, j, 0);

}

} catch (LDAPException e) {

System.err.println(e);

System.exit(1);

}

Dimension dim = new Dimension(550, 300);

new SimpleDialog("PropertyTable " + dn, table, 0, 0,

dim, true).show();

The command-line arguments are similar to those of the other applications:

java PropertyTable [-D AUTHDN] [-w AUTHPASSWORD] [-h HOST]

[-p PORT] DN

We can display the contents of Jeff Vedder’s directory entry by entering the fol-
lowing command:

java PropertyTable "uid=jvedder,ou=people,o=airius.com"

The dialog box displays the entry as in Figure 12-17.
PropertyTable is read-only. It prevents editing of table cells by overriding

JTable.isCellEditable:

/**

* Override DefaultTableModel.isCellEditable to disallow

* editing.

*

* @param row the row of the cell being queried

* @param column the column of the cell being queried

* @return true if the cell is editable

*/

public boolean isCellEditable(int row,

int column) {

if (column == 0) {

// Never allow editing the attribute name

return false;

}

// For now, do not allow editing the values either

414 Modeling Relationships

return false;

}

This is where we offer the unavoidable exercise for the reader: extend
PropertyTable to become a full-fledged property editor for directory entries. Doing
this would require changing the return value from isCellEditable to true for column
1, and then handling any changes made by the user. Changed values would need to be
written to the directory. We would need a way to add values and to delete them. And
finally, the editor would have to be able to display, or at least handle, binary values.

Connecting the Property Table and the Directory Viewers

Let’s see how to instantiate a PropertyTable from the various directory viewers we
have developed in Chapters 10 and 12.

OrgChartTree and PropertyTable

To launch a PropertyTable view when a node is double-clicked in an OrgChartTree,
we need to do two things: pass an LDAPConnection object to its constructor and have
the OrgChartTree object listen for mouse events. If there is a double-click event, then

Attributes as Pointers 415

FIGURE 12-17. PropertyTable for Jeff Vedder.

the DN of the node is extracted from its user object and a PropertyTable is created
and placed in a dialog box:

/**

* Constructor

*

* @param root root node of a tree of DefaultMutableTreeNode

* @param ldc an active connection to a directory

*/

public OrgChartTree(DefaultMutableTreeNode root,

LDAPConnection ldc) {

super(root);

_ldc = ldc;

if (root.getUserObject() == null) {

// Must be a virtual root

setRootVisible(false);

}

setCellRenderer(new OrgChartTreeCellRenderer());

addMouseListener(new MouseAdapter() {

public void mouseClicked(MouseEvent e) {

if (e.getClickCount() == 2) { // double click

TreePath path =

getPathForLocation(e.getX(),

e.getY());

if (path == null) {

return;

}

DefaultMutableTreeNode node =

(DefaultMutableTreeNode)

path.getLastPathComponent();

Hashtable ht =

(Hashtable)node.getUserObject();

String dn = (String)ht.get(“dn”);

if (dn != null) {

JTable table =

new PropertyTable(_ldc, dn);

Dimension dim =

new Dimension(500, 350);

new SimpleDialog(dn, table, 20, 20,

dim, false).show();

}

}

}

});

}

416 Modeling Relationships

Figure 12-18 illustrates the results of double-clicking on the node for David
Miller.

OrgChart and PropertyTable

We mentioned earlier that OrgChartPanel can supply an ActionListener with
events. Whenever a user clicks on a name in the panel, all registered ActionListeners
are called with an ActionEvent. The action command is the DN of the corresponding
directory entry. To receive and process this event, the OrgChart application must reg-
ister itself as an ActionListener with the OrgChartPanel and implement the
actionPerformed method of the ActionListener interface:

public class OrgChart implements ActionListener {

public OrgChart(String[] args) {

...

// Create a panel component with the nodes found

OrgChartPanel org = new OrgChartPanel(root);

org.setSubordinateTextColor(Color.blue);

org.addActionListener(this);

Attributes as Pointers 417

FIGURE 12-18. Popping up a PropertyTable from OrgChartTree.

...

}

/**

* Handle events from clicking on a user node

*

* @param e event from a button; the action command

* is the DN of the user entry

*/

public void actionPerformed(ActionEvent e) {

if (e.getSource() instanceof JButton) {

String dn = e.getActionCommand();

System.out.println(dn);

// The action command is the DN of an entry to view

JTable table = new PropertyTable(_ldc, dn);

Dimension dim = new Dimension(500, 300);

new SimpleDialog(dn, table, 20, 20,

dim, false).show();

}

}

TestTree and PropertyTable

The TestTree application we presented in Chapter 10 can display a directory tree as a
JTree, and optionally also as a table that presents a few attributes each of all child
entries of the node selected in the tree. For our concluding example of LDAP compo-
nent integration, we will extend TestTree to optionally request a third pane to pre-
sent all attributes of the entry selected in the child table. The third pane will be a
PropertyTable.

In parsing command-line arguments, TestTree will now allow the values 1
through 3 for the number of panes, rather than 1 through 2:

} else if (args[i].compareTo("-panes") == 0) {

if ((i + 1) < args.length) {

nPanes = Integer.parseInt(args[i+1]);

invalid = ((nPanes < 1) || (nPanes > 3));

i++;

}

If more than one pane is requested, a tree panel and a child table panel are cre-
ated and inserted into a horizontal splitter pane as before. If more than two panes are
requested, a PropertyTable object is created as well. The horizontal splitter pane and

418 Modeling Relationships

the PropertyTable object are added to a vertical splitter pane. TestTree creates a lis-
tener for selection events in the child table. When a row is selected, the DN of the cor-
responding directory entry is obtained from the child table and the PropertyTable
object is asked to refresh itself from the new DN:

if (nPanes > 1) {

// Show both a tree and a table

final SimpleTable table = new SimpleTable();

// Hook the table to the tree with an adapter

EntryListAdapter lister =

new EntryListAdapter(ldc,

table);

tree.addDirNodeListener(lister);

// A panel is required to keep the background

// the right color

JPanel tablePanel =

addTableToScrollPanel(table);

JSplitPane splitPane =

new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,

treeSp, tablePanel);

splitPane.setBorder(

new EmptyBorder(6, 6, 6, 6));

if (nPanes > 2) {

// Add a property table to show all

// properties of a selected table row

final PropertyTable ptable =

new PropertyTable(ldc, "");

tablePanel =

addTableToScrollPanel(ptable);

// A vertical splitter pane, with the

// property table at the bottom

JSplitPane triPane =

new JSplitPane(

JSplitPane.VERTICAL_SPLIT,

splitPane, tablePanel);

triPane.setBorder(

new EmptyBorder(6, 6, 6, 6));

triPane.setDividerLocation(200);

frame.getContentPane().add(triPane);

frame.setSize(new Dimension(650, 450));

// Listen for selection changes in the

Attributes as Pointers 419

// simple table and notify the property

// table

ListSelectionModel m =

table.getSelectionModel();

m.addListSelectionListener(

new ListSelectionListener() {

public void valueChanged(

ListSelectionEvent e) {

int index =

table.getSelectedRow();

String dn =(String)

table.getKeyAt(index);

ptable.setDN(dn);

}

});

} else {

// Two panes

frame.getContentPane().add(splitPane);

frame.setSize(new Dimension(650, 300));

}

} else {

// One pane - just show the tree

frame.getContentPane().add(treeSp);

frame.setSize(new Dimension(200, 300));

}

You can now request three panes, using the following command:

java TestTree -panes 3

As you click through the tree, the table on the right is updated (Figure 12-19). As
you click on a row in the table on the right, the table below is updated with all attrib-
utes for the entry.

420 Modeling Relationships

Conclusion

In this chapter we have discussed alternative views of directory relationships, investi-
gated ways to capture these relationships in an internal tree structure, and given
examples of the alternative structures with two different components for rendering an
organizational chart from directory data.

We continued our exploration of LDAP GUI components with a property table
viewer and demonstrated how to connect it to other GUI components with standard
JavaBean event interfaces. Our collection of reusable LDAP JavaBeans is now sub-
stantial, and most importantly, we know how to create new ones and how to integrate
them into applications.

Conclusion 421

FIGURE 12-19. Three-pane directory browser.

Most of the examples and discussion in the book so far have pertained to using the
LDAP SDK in a client application or applet. This chapter will focus on using the

SDK in server applications. We will build a general-purpose server-side phone book
application that can be used to provide HTML access to an LDAP directory. The
application will be built as a Java servlet and provide digital certificate (X.509v3)
lookup and the ability to view someone’s photograph. The servlet also supports the
concept of internal and external users.

Server-side applications typically are exposed to much higher bandwidth require-
ments than client-side programs, and we will look closely at squeezing maximal perfor-
mance from the SDK. Let’s begin the journey into server-side use of the SDK.

Overview of Servlets

A basic understanding of the architecture of Java servlets is important to the applica-
tion that will be developed in this chapter. A servlet at its simplest level can be thought
of as a Java application written to reside on a server and provide data back to clients.
These clients do not have to be HTTP clients, although our discussion will focus on
Web clients. The servlet runs either on a Web server that hosts servlets natively or
through the use of a servlet engine that extends the functionality of a Web server.
Servlets also provide the added benefit of being platform neutral: you can have the
servlet running in Solaris, Linux, NT, or any other operating system that has a servlet
engine. Servlets provide the same functionality as CGI scripts, but they have many fea-
tures that make them superior to CGIs. They are written in Java, which makes them
portable across server architectures; they are loaded once by the servlet engine, which
makes them very fast; and they persist across multiple client requests.

Servlets and
LDAP

423

C H A P T E R 1 3

Servlets communicate with browser-based clients using the following flow
model. Note that some commercial Web servers include a servlet engine and do not
require an external engine.

The client requests a page from the Web server.

The Web server invokes the servlet engine (externally or internally).

The servlet is loaded (if not already loaded by the system).

If it is a fresh load, then the init method of the servlet is invoked.

The doPost or doGet method of the servlet is invoked with client data.

The servlet processes the data.

The results are returned to the caller (Web server).

The Web server returns the results to the client.

The init method allows us to prepare the environment for future calls to the
servlet. Servlets persist between multiple connections and can maintain information
across them. This is one significant advantage over standard CGIs, which require a
new invocation for each request. The init method also lets us do some of the more
CPU-intensive tasks before our clients begin requesting use of the servlet. In this chap-
ter we will develop a pooling architecture to alleviate performance bottlenecks in the
phone book servlet. Without the init method and the load-once characteristic of the
servlet architecture, we would not be able to take advantage of a connection pool.

Many books more fully describe servlet architecture. The Sun Web site (at
http://java.sun.com/products/servlet/index.html) contains literature on this
important architecture. The site also provides the latest version of jsdk.jar, the main
library for compiling and implementing Java servlets.

Uses of LDAP in Servlets

Before delving into the implementation of our phone book servlet, it is worthwhile to
look at some of the primary areas where LDAP can serve the needs of the servlet
developer. The LDAP directory can provide the authentication source for servlets. The
ability to code your own custom security policy in your servlet and take advantage of
the LDAP directory for storage of authentication details provides a powerful model
for today’s applications.

Furthermore, the combination of authentication information in the LDAP direc-
tory and an HTML presentation can provide universal and user-friendly access to
Internet-based applications. The standard Web server authentication mechanism that
merely asks for a user ID and password can be replaced with a graphically rich and

424 Servlets and LDAP

friendly interface. Of course, the standard Web server authentication can also be uti-
lized, and the server will pass the authentication details on to the servlet. The authenti-
cated user ID is then available with the HttpServletRequest.getRemoteUser method.
Figure 13-1 shows a sample interface for requesting authentication information.

The directory also stores the user hint information as an additional attribute.
Additional uses of the directory for servlet developers include storing shopping cart or
purchasing preferences for each user within the directory. We discussed in Chapter 6
how to serialize Java object classes and store them in the directory. Servlets can store
entire session objects and other pertinent information about a user. When the user
returns to the application, the servlet retrieves this information and restores all the
preferences. The directory, which servlets can access through the Java LDAP SDK,
also serves as a resource for managing information about users.

Designing the LDAP Servlet

Before you begin work on the servlet itself, your machine configuration needs to be
updated for compiling servlets. If you are using the servlet engine in Netscape Enterprise

Designing the LDAP Servlet 425

FIGURE 13-1. Friendly authentication screen.

Server (which is included on the CD-ROM with this book), you already have the Java
Servlet Development Kit (JSDK): bin/https/jar/servlets.jar. If you are using a dif-
ferent servlet engine, you may need to install the JSDK, which includes the file jsdk.jar.
Either servlets.jar or jsdk.jar must be added to the CLASSPATH of your javac com-
piler. Chapter 3 included instructions for installing the LDAP SDK; follow the instruc-
tions for adding the SDK to your CLASSPATH also to add the jsdk.jar file to your
CLASSPATH. The second step is to include the ldapjdk.jar file in your servlet engine’s
CLASSPATH. Many different servlet engines are available on the market, and each has its
own method of setting up the CLASSPATH. Refer to the documentation provided with
your servlet engine to configure the CLASSPATH. Instructions for configuring Netscape
Enterprise Server to include a JAR file in the CLASSPATH of its Java Virtual Machine
(JVM) and for enabling and installing servlets are at http://home.netscape.com/eng/
server/webserver/4.0/index.html.

After compiling and installing the phone book servlet, you may receive the error
shown in Figure 13-2 in your browser when trying to access the servlet. The error
message indicates that the servlet engine could not locate the LDAP SDK JAR file
ldapjdk.jar. The servlet engine generally uses its own CLASSPATH rather than the one
you have set up for your compiler.

Location of Files

Each servlet engine has its own location for storing the class files. Again, consult
the documentation and store your compiled class files in this directory. Netscape

426 Servlets and LDAP

FIGURE 13-2. Error message for misconfigured CLASSPATH on servlet engine.

Enterprise Server allows you to specify any directory you choose for storing servlets;
see http://home.netscape.com/eng/server/webserver/4.0/servlets/1-intro.

htm#532740. You should not store your Java source files in the servlet engine direc-
tory. Servlets are accessed with a URL of the form http://webserver_

hostname/servlet/NameOfServlet. Many servlet engines are case-sensitive when
specifying the servlet name. Our phone book servlet is accessed with the URL http://
localhost/servlet/Phonebook.

Our Phone Book Servlet

Our servlet is designed to provide a lightweight phone book application that can be
used by anyone inside or outside of the organization to locate people and resources in
the LDAP directory. These are the requirements for our servlet:

• Provide phone book lookups

• Be accessible with a simple browser

• Utilize the corporate LDAP directory

• Be customizable

• Have several search attributes (phone number, e-mail address, etc.)

• Be useful both for an intranet and an extranet, and present data specific to
each

• Allow user self-administration

• Pool connections and cache data for optimal performance

• Be accessible over SSL (Secure Sockets Layer)

Phone Book Lookups

The servlet will function as the internal corporate white pages. It will serve as an
external face to the organization by allowing lookup of limited employee information,
such as phone number. Since the corporate directory is the authoritative source for
user data, this information will always be current.

Accessibility with a Simple Browser

Requests to the servlet will use HTTP, and all of its output will be in standard HTML.
Small pieces of cross-platform JavaScript will be utilized to enhance the user experi-
ence. The output must be compatible with a wide range of browsers, since the appli-
cation will be accessed by outside users.

Our Phone Book Servlet 427

Utilizing the Corporate LDAP Directory

The reason for utilizing the corporate directory is obvious: it is a maintained and reli-
able data source. In many deployment scenarios there are options for the topology of
the LDAP servers. The directory server could be a replicated copy of the master server
with specific settings for the efficient and safe provision of data to the phone book
application. A special replicated copy of the directory could be placed outside the fire-
wall with minimal data available for external users.

Customizability

The servlet is customizable or extensible to meet the needs of the corporation. This
application is fully customizable because the entire source code is provided on the
CD-ROM that accompanies the book. If you want to implement a different view or
provide other interactions, the model is simple to enhance or extend.

Search Attributes

The search interface of the application offers several options. You can search for
someone by name, phone number, or e-mail address. You can add additional search
schemes by editing the pull-down menu contents and adding a code snippet to the
search handler. One major advantage of having the code on the server instead of on
the client is that these changes can be made and put online without users of the appli-
cation being required to upgrade or reconfigure. The search code makes use of wild
card characters to return as many matches as possible for a given target string.

Intranet and Extranet

A module within the servlet determines if the caller is inside the company or outside.
This module can be fully customized to meet specific network requirements, and it can
even utilize other data sources to determine these needs. The servlet also enforces a
restriction that “outside” clients cannot perform certain operations, such as lookup of
complete records or of employee photographs.

User Self-administration

One area in which many corporations are seeing great savings is employee self-
administration. The phone book servlet allows employees to change certain information
about themselves, such as home phone numbers, mobile phone numbers, or pass-

428 Servlets and LDAP

words. This self-administration by employees frees up the administrative staff to deal
with larger issues.

Connection Pooling and Data Caching

Because the servlet has the potential to be called by many users simultaneously, much
thought went into maximizing its performance. A connection-pooling model was
developed to provide fast turnaround of data to users. The entire connection-pooling
class will be presented and reviewed shortly. This class takes advantage of the init
method of servlets and allocates connections at start-up. The built-in caching services
of the SDK are utilized as well to minimize repeated hits to the directory.

Accessibility over SSL

Because servlets are called from the Web server, it is easy to add the extra protection of
SSL for the data transport between the client and the server by enabling SSL on the
Web server. The servlet requires no special code to take advantage of this powerful
secure transport. The servlet can also be made to communicate with the LDAP server
using SSL, but that feature is not implemented in the code example provided in this
chapter.

Connection-Pooling Class

The benefits of connection pooling are most fully realized with server-side processes.
As noted throughout the book, the time to set up an LDAP connection can be an order
of magnitude larger than the time for the transaction that follows. Our connection-
pooling class has the following constructors:

public LDAPConnectionPool(int min, int max, String host,

int port, String authid, String authpw)

public LDAPConnectionPool(int min, int max, String host, int port)

public LDAPConnectionPool(String host, int port)

The constructor arguments define the characteristics of the pool. The min argu-
ment is the minimum number of connections for the pool to open to the directory
server. The max argument is the number of connections to which the pool will grow
when all connections are in use. The host and port arguments determine the server
host and port number. The authdn and authpw arguments specify the credentials of
the user to authenticate as. The authdn is a full distinguished name (uid=bjensen,
ou=people, o=airius.com, for example).

Our Phone Book Servlet 429

Once the connection pool has been allocated, LDAP connections are requested
with the getConnection method. The following code snippet shows setting up a con-
nection pool and obtaining a connection.

LDAPConnectionPool ldapPool =

new LDAPConnectionPool(40, 60, "localhost", 389);

LDAPConnection ld = ldapPool.getConnection();

When you have finished with the connection, it should be returned to the pool
using the close method:

ldapPool.close(ld);

Other than the methods for obtaining the connection and returning it to the pool,
you can use the acquired LDAPConnection object just like any other LDAPConnection.
Other methods of interest in the LDAPConnectionPool class are as follows:

• printPool prints the contents of the pool to standard output (stdout).

• setDebug turns debug printouts on or off.

• getDebug returns the current debug setting.

The class is made available to the servlet engine by the placing of all class files in
the CLASSPATH of the servlet engine or by placing them directly in the servlet directory.
The following class files are part of the pooling package:

• LDAPConnectionPool.class

• LDAPConnectionPool$LDAPConnectionObject.class

The code for the pooling class follows.

import java.util.*;

import netscape.ldap.*;

public class LDAPConnectionPool {

/**

* Constructor for specifying all parameters

*

* @param min initial number of connections

* @param max maximum number of connections

* @param host host name of LDAP server

430 Servlets and LDAP

* @param port port number of LDAP server

* @param authdn DN to authenticate as

* @param authpw password for authentication

* @exception LDAPException on failure to create connections

*/

public LDAPConnectionPool(int min, int max,

String host, int port,

String authdn, String authpw)

throws LDAPException {

this.poolSize = min;

this.poolMax = max;

this.host = host;

this.port = port;

this.authdn = authdn;

this.authpw = authpw;

this.debugMode = false;

createPool();

}

/**

* Constructor for specifying all parameters, anonymous

* identity

*

* @param min initial number of connections

* @param max maximum number of connections

* @param host host name of LDAP server

* @param port port number of LDAP server

* @exception LDAPException on failure to create connections

*/

public LDAPConnectionPool(int min, int max,

String host, int port)

throws LDAPException {

this(min, max, host, port, "", "");

}

/**

* Constructor for using default parameters,

* anonymous identity

*

* @param host host name of LDAP server

* @param port port number of LDAP server

* @exception LDAPException on failure to create connections

*/

Our Phone Book Servlet 431

public LDAPConnectionPool(String host, int port)

throws LDAPException {

// poolsize=10,max=20,host,port,

// noauth,nopswd

this(10, 20, host, port, "", "");

}

/**

* Destroy the whole pool - called during a shutdown

*/

public void destroy() {

for (int i = 0; i < pool.size(); i++) {

disconnect(

(LDAPConnectionObject)pool.elementAt(i));

}

pool.removeAllElements();

}

The getConnection method retrieves an available LDAPConnection from the pool:

/**

* Get a connection from the pool

*

* If no connections are available, the pool will be

* extended if the number of connections is less than

* the maximum; if the pool cannot be extended, the method

* blocks until a free connection becomes available.

*

* @return an active connection

*/

public LDAPConnection getConnection() {

LDAPConnection con;

while((con = getConnFromPool()) == null) {

synchronized(pool) {

try {

pool.wait();

} catch (InterruptedException e) {

}

}

}

return con;

}

432 Servlets and LDAP

/**

* Get a connection from the pool

*

* If no connections are available, the pool will be

* extended if the number of connections is less than

* the maximum; if the pool cannot be extended, the method

* returns null.

*

* @return an active connection or null

*/

protected synchronized LDAPConnection getConnFromPool() {

LDAPConnection con = null;

LDAPConnectionObject ldapconnobj = null;

int pSize = pool.size();

// Get an available connection

for (int i = 0; i < pSize; i++) {

// Get the ConnectionObject from the pool

LDAPConnectionObject conn =

(LDAPConnectionObject)pool.elementAt(i);

if (conn.isAvailable()) {

ldapconnobj = conn;

break;

}

}

if (ldapconnobj == null) {

// If there were no conns in pool, can we grow

// the pool?

if ((poolMax < 0) ||

((poolMax > 0) &&

(pSize < poolMax))) {

// Yes we can grow it

int i = addConnection();

// If a new connection was created, use it

if (i >= 0) {

ldapconnobj =

(LDAPConnectionObject)pool.elementAt(i);

}

Our Phone Book Servlet 433

} else {

debug("All pool connections in use",true);

}

}

if (ldapconnobj != null) {

ldapconnobj.setInUse(true);

con = ldapconnobj.getLDAPConn();

}

return con;

}

The close method, which follows, is what users of the pool invoke to close
down (or return to the pool) a connection. We do not actually shut down the connec-
tion, but we mark it as available for reuse. Once we return a connection to the pool, a
notification is sent to any thread waiting for a new connection.

/**

* This is our soft close; all we do is mark

* the connection available for others to use

*

* @param ld a connection to be returned to the pool

*/

public synchronized void close(LDAPConnection ld) {

int index = find(ld);

if (index != -1) {

LDAPConnectionObject co =

(LDAPConnectionObject)pool.elementAt(index);

co.setInUse(false); // Mark as available

synchronized(pool) {

pool.notifyAll();

}

}

}

/**

* Debug method to print the contents of the pool

*/

public void printPool(){

System.out.println("—LDAPConnectionPool—");

for (int i = 0; i < pool.size(); i++) {

LDAPConnectionObject co =

(LDAPConnectionObject)pool.elementAt(i);

434 Servlets and LDAP

System.out.println("" + i + "=" + co);

}

}

/**

* Physically disconnect a connection object and set its

* reference to null

*

* @param ld a connection to be discarded

*/

private void disconnect(

LDAPConnectionObject ldapconnObject) {

if (ldapconnObject != null) {

if (ldapconnObject.isAvailable()) {

LDAPConnection ld = ldapconnObject.getLDAPConn();

if ((ld != null) && (ld.isConnected())) {

try {

ld.disconnect();

} catch (LDAPException e) {

debug("disconnect: "+e.toString());

}

}

ldapconnObject.setLDAPConn(null); // Clear conn

}

}

}

The createPool method is called by the constructors and starts the pool setup.
It validates the arguments and resets any that are not acceptable. The method then
calls setUpPool to build the connections:

private void createPool() throws LDAPException {

// Called by the constructors

if (poolSize <= 0) {

throw new LDAPException("LDAPConnectionPoolSize invalid");

}

if (poolMax < poolSize) {

debug("ConnectionPoolMax is invalid, set to " +

poolSize);

poolMax = poolSize;

}

debug("****Initializing LDAP Pool****",true);

debug("LDAP host = "+host+" on port "+port,true);

debug("Number of connections="+poolSize,true);

Our Phone Book Servlet 435

debug("Maximum number of connections="+poolMax,true);

debug("******",true);

pool = new java.util.Vector(); // Create pool vector

setUpPool(poolSize); // Initialize it

}

private int addConnection() {

int index = -1;

debug("adding a connection to pool...");

try {

int size = pool.size() + 1; // Add one connection

setUpPool(size);

if (size == pool.size()) {

// New size is size requested?

index = size - 1;

}

} catch (Exception ex) {

debug("Adding a connection: "+ex.toString(),true);

}

return index;

}

private synchronized void setUpPool(int size)

throws LDAPException {

// Loop on creating connections

while(pool.size() < size) {

LDAPConnectionObject co =

new LDAPConnectionObject();

// Make LDAP connection

co.setLDAPConn(new LDAPConnection());

try {

co.getLDAPConn().connect(host, port,

authdn, authpw);

} catch (LDAPException le) {

debug("Creating pool:"+le.toString(),true);

debug("aborting....",true);

throw le;

}

co.setInUse(false); // Mark not in use

pool.addElement(co);

436 Servlets and LDAP

}

}

private int find(LDAPConnection con) {

// Find the matching connection in the pool

if (con != null) {

for (int i = 0; i < pool.size(); i++) {

LDAPConnectionObject co =

(LDAPConnectionObject)pool.elementAt(i);

if (co.getLDAPConn() == con) {

return i;

}

}

}

return -1;

}

/**

* Set the debug printout mode

*

* @param mode debug mode to use

*/

public synchronized void setDebug(boolean mode) {

debugMode = mode;

}

/**

* Report the debug printout mode

*

* @return debug mode in use

*/

public boolean getDebug() {

return debugMode;

}

private void debug(String s) {

if (debugMode)

System.out.println("LDAPConnectionPool ("+

new Date()+") : " + s);

}

private void debug(String s, boolean severe) {

if (debugMode || severe) {

System.out.println("LDAPConnectionPool ("+

new Date()+") : " + s);

Our Phone Book Servlet 437

}

}

The LDAPConnectionObject inner class manages a connection object. It encap-
sulates an LDAPConnection and adds a boolean value marking whether or not the
connection is currently in use:

/**

* Wrapper for LDAPConnection object in pool

*/

class LDAPConnectionObject {

/**

* Returns the associated LDAPConnection

*

* @return the LDAPConnection

*

*/

LDAPConnection getLDAPConn() {

return this.ld;

}

/**

* Sets the associated LDAPConnection

*

* @param ld the LDAPConnection

*

*/

void setLDAPConn(LDAPConnection ld) {

this.ld = ld;

}

/**

* Marks a connection in use or available

*

* @param inUse true to mark in use, false to mark available

*

*/

void setInUse(boolean inUse) {

this.inUse = inUse;

}

/**

438 Servlets and LDAP

* Returns whether the connection is available

* for use by another user

*

* @return true if available

*/

boolean isAvailable() {

return !inUse;

}

/**

* Debug method

*

* @return a user-friendly rendering of the object

*/

public String toString() {

return "LDAPConnection=" + ld + ",inUse=" + inUse;

}

private LDAPConnection ld; // LDAP Connection

private boolean inUse; // In use? (true = yes)

}

private int poolSize; // Min pool size

private int poolMax; // Max pool size

private String host; // LDAP host

private int port; // Port to connect at

private String authdn; // Identity of connections

private String authpw; // Password for authdn

private java.util.Vector pool; // The actual pool

private boolean debugMode;

}

Servlet Request-Response Model

The servlet is self-contained and relies on static files only for icons. State is maintained
between accesses using <HIDDEN> tags in the HTML documents—the most lightweight
means for both the server and the client. The state model for the program is as follows:

On initial or invalid request, transmit a fresh search page.

On incoming search page, generate a search results page.

From the search results page, go to one of the following:

Our Phone Book Servlet 439

• Detail view

• Retrieval of a certificate

• Retrieval of a photograph

From detail view, do one of the following:

• Change password

• Edit user information

All these actions are controlled through string constants declared at the top of
the module. All fields that are sent back to the client are also named using these con-
stants. The main search window is shown in Figure 13-3.

Besides the connection pool, the Phonebook object uses the CParseRFC1867 and
CBlobInputStream classes to parse a multipart MIME document and to read raw
data from a binary part. The parsing of multipart data is greatly simplified by the
CParseRFC1867 java class courtesy of Peter English at english@quiknet.com. Figure
13-4 illustrates the relationships of the classes of the application.

440 Servlets and LDAP

FIGURE 13-3. Main entry point to our phone book.

Our Phone Book Servlet 441

getServletInfo() : String
init(sc : ServletConfig) : void
destroy() : void
doPost(req : HttpServletRequest, res : HttpServletResponse) : void
doGet(req : HttpServletRequest, res : HttpServletResponse) : void
searchLDAP(req : HttpServletRequest, out : PrintWriter, isInternal :

boolean) : void
binaryLDAP(req : HttpServletRequest, res : HttpServletResponse, attr :

String, name : String, mime : String) : void
errorMessage(out : PrintWriter, errmsg : String) : void
checkInside(req : HttpServletRequest) : boolean
getLDAPConn() : LDAPConnection
closeConnection(ld : LDAPConnection) : void
getValue(entry : LDAPEntry, attrN : String) : String
getValue(entry : LDAPEntry, attrN : String, defVal : String) : String
getBinaryValue(entry : LDAPEntry, attrN : String) : byte[]
getScope(scope : String) : int
prettyDN(theDN : String) : String
readFormData(req : HttpServletRequest, fdname : String) : String
buildAttr(attrN : String, attrV : String) : LDAPAttribute
modifyPwd(req : HttpServletRequest, out : PrintWriter) : void
modifyEntry(req : HttpServletRequest, out : PrintWriter) : void
sendSrchPage(out : PrintWriter, isInternal : boolean, uri : String) : void
sendPwdPage(req : HttpServletRequest, out : PrintWriter, isInternal :

boolean) : void
generateRow(out : PrintWriter, color : String, attrs : String[], entry :

LDAPEntry, uri : String, url : String, isInternal : boolean) : void
detailEdit(req : HttpServletRequest, out : PrintWriter, detail :

boolean) : void

LDAPConnectionPool(min : int, max : int, host : String, port : int,
authdn : String, authpw : String)

LDAPConnectionPool(min : int, max : int, host : String, port : int)
LDAPConnectionPool(host : String, port : int)
destroy() : void
getConnection() : LDAPConnection
getConnFromPool() : LDAPConnection
close(ld : LDAPConnection) : void
printPool() : void
disconnect(ldapconnObject : LDAPConnectionObject) : void
createPool() : void
addConnection() : int
setUpPool(size : int) : void
find(con : LDAPConnection) : int
setDebug(mode : boolean) : void
getDebug() : boolean
debug(s : String) : void
debug(s : String, severe : boolean) : void

LDAPConnectionPool

Phonebook

CBlobInputStream CParseRFC1867

1..11..1
1..1

FIGURE 13-4. Phonebook classes

The Phonebook servlet code is presented here:

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import netscape.ldap.*;

import netscape.ldap.util.*;

import netscape.ldap.controls.*;

/**

* Phonebook servlet

*

*

* @version 1.0

* @author tdahbura

**/

public class Phonebook extends HttpServlet {

The following settings may need customization for your site. These, as well as
many other settings, can be set using the phone book properties file described later in
this chapter, in the section on how to set up the servlet. They are standard LDAP val-
ues that have been described elsewhere in the book.

// The following values are defaults. They

// can all be set using the properties file.

// ——————————————————————

protected static String host = "localhost";

protected static int port = 389;

protected static String srchRoot = "o=airius.com";

static String orgName = "Airius Communications";

static String ownMail = "webmaster@airius.com";

static int maxPhotoSize = 50000;

The following declaration is the Web server URL for the static graphic images used
to display the pages. In this configuration we are storing the images in the directory
phonebook/images under our main Web server document root. This setting should be
made in the properties file and is dependent on your Web server’s configuration.

String imagesURL = "/phonebook/images/";

//The following values may all be customized for look and feel

// Colors for listings lines

442 Servlets and LDAP

final static String[] LIST_COLOR = {"#00CCCC","#009999"};

// Colors for initial search page

final static String srchPageColors =

"\"#999999\" text=\"#000000\""+

" link=\"#0000FF\" vlink=\"#FF00FF\""+

" alink=\"#FF0000\"";

// Colors for output of search

final static String srchOutColors =

"\"#999999\" text=\"#000000\""+

" link=\"#0000FF\" vlink=\"#FF00FF\""+

" alink=\"#FF0000\"";

// End of customizable values ——————————————

protected static int scope = LDAPConnection.SCOPE_SUB;

private LDAPConnectionPool ldapPool;

private LDAPCache readCache = null;

final static String certAttr = "userCertificate;binary";

final static String photoAttr = "jpegPhoto";

// Window dimensions for photos

final static int photoWinHeight = 100;

final static int photoWinWidth = 100;

final static String[] intAttrs = {"cn","telephoneNumber",

"mail",

certAttr,photoAttr,

"givenName","sn"};

final static String[] extAttrs = {"cn","telephoneNumber",

"mail",

certAttr,photoAttr,

"givenName","sn"};

private String hostIP = "127.0.0.1";

Next we declare the command and field names. By using these throughout the
code, we can minimize errors on command parsing.

final static String ACTION_FIELD = "cmd";

final static String ACTION_SEARCH = "search";

final static String ACTION_DETAIL = "getdetail";

final static String ACTION_GETCERT = "getcert";

final static String ACTION_GETPHOTO = "getphoto";

final static String ACTION_EDIT = "editrecord";

final static String ACTION_DOEDIT = "editsubmit";

Our Phone Book Servlet 443

final static String ACTION_PWD = "editpwd";

final static String ACTION_DOPWD = "pwdsubmit";

final static String FLDNAME_SRCHKIND = "searchkind";

final static String FLDNAME_SRCHSTRING = "searchstring";

final static String FLDNAME_DN = "dn";

final static String FLDNAME_OLDPW = "oldpwd";

final static String FLDNAME_NEWPW1 = "newpwd1";

final static String FLDNAME_NEWPW2 = "newpwd2";

final static String FLDNAME_NEWPHOTO = "newphoto";

/**

* return some descriptive information about us

*

* @return descriptive information

*/

public String getServletInfo() {

return "A servlet that handles phone book lookup " +

"using LDAP";

}

/**

* Initialize the servlet. This is called once at start-up.

* Properties are read and prepared for future operations.

* The LDAPConnectionPool and the LDAPCache instances are

* prepared. The host IP address is stored for later use

* by the inside/outside firewall checks.

*

* @param sc the servlet configuration

* @exception ServletException on

* failure to read properties or initialization of pool

*/

public void init(ServletConfig sc)

throws ServletException {

super.init(sc);

The next block of the init method handles reading the properties file, where
configuration is stored. The location to store a properties file depends on the servlet
server. If we cannot locate the file, a file is created. The first time the servlet is run, a
warning message will be generated; look for the file phonebook.properties and store
properties there. Any errors in converting integers or reading property values will
cause the servlet to throw an exception. Fix the indicated value and restart the servlet.

444 Servlets and LDAP

// Read properties from the properties file.

// If not found, then create a placeholder file.

Properties props = new Properties();

File f = new File("phonebook.properties");

if (!f.exists()) {

System.out.println(f.getPath() + "not found");

try {

FileWriter fwout = new FileWriter(f);

fwout.write("#Store your phone book properties

here");

fwout.close();

throw new ServletException

("Cannot locate properties in ->"+f.getPath());

} catch (IOException ie) {

System.out.println(

"Cannot write properties file");

throw new ServletException(

"Cannot write properties file");

}

}

try {

InputStream is = new BufferedInputStream(

new FileInputStream(f));

props.load(is);

is.close();

} catch (IOException e) {

throw new ServletException

("Cannot load properties in ->"+f.getPath());

}

// Read and save properties

host = props.getProperty("host",host);

try {

port = Integer.parseInt(

props.getProperty("port",String.valueOf(port)));

} catch (Exception ex) {

System.out.println("Invalid port");

throw new ServletException(

"Invalid port in properties file");

}

srchRoot = props.getProperty("srchroot",srchRoot);

orgName = props.getProperty("orgname",orgName);

ownMail = props.getProperty("ownmail",ownMail);

Our Phone Book Servlet 445

imagesURL = props.getProperty("imgurl",imagesURL);

int initPool=0;

int maxPool=0;

String authdn="";

String authpw="";

int cacheSize=0;

int cacheTime=0;

try {

initPool = Integer.parseInt(

props.getProperty("initpool","10"));

maxPool = Integer.parseInt(

props.getProperty("maxpool","20"));

authdn = props.getProperty("authdn","");

authpw = props.getProperty("authpw","");

cacheSize = Integer.parseInt(

props.getProperty("cachesize","250000"));

cacheTime = Integer.parseInt(

props.getProperty("cachetime","3600"));

maxPhotoSize = Integer.parseInt(

props.getProperty("maxphotosize","50000"));

} catch (NumberFormatException ne) {

throw new ServletException(

"Invalid integer value in properties file");

}

The following code sets up and initializes the cache and connection pool. The
LDAPConnectionPool class is important for the phone book servlet’s performance.
Another feature contributing to the performance of the servlet is the use of the cache
mechanism of the Java LDAP SDK (the SDK cache mechanism is fully described in
Chapter 15). Our phone book servlet utilizes a 256K cache to pool repeated search
requests.

try {

// Create connection pool

ldapPool = new LDAPConnectionPool(

initPool,maxPool,host,port,authdn,authpw);

if (cacheSize > 0) {

readCache = new LDAPCache(cacheTime,cacheSize);

}

} catch (Exception ex) {

ex.printStackTrace();

throw new ServletException

446 Servlets and LDAP

("Unable to initialize LDAP connection pool");

}

// Get our IP address and trim last octet

try {

hostIP =

java.net.InetAddress.getLocalHost().

getHostAddress();

} catch (java.net.UnknownHostException he) {

hostIP = "127.0.0.1";

}

System.out.println("Servlet server IP="+hostIP);

int i = hostIP.lastIndexOf('.');

hostIP = hostIP.substring(0, i);

}

/**

* Destroy the servlet - called during an unload/shutdown

*/

public void destroy() {

if (ldapPool != null) {

ldapPool.destroy(); // Release all connections

}

super.destroy();

}

/**

* Handle HTTP posts.

* Check size of request and pass the request off to the

* doGet handler if not too large.

* If it is too large, respond with an HTML error page.

*

* @param req the HTTP request

* @param res the HTTP response

*

* @exception ServletException

* @exception IOException

*

*/

public void doPost(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException {

// Value chosen to limit denial of service attacks

int limit = maxPhotoSize+1*1024;

Our Phone Book Servlet 447

if (maxPhotoSize==0) {

limit = 20*1024; //Still within reason?

}

if (req.getContentLength() > limit) {

res.setContentType("text/html");

PrintWriter out = res.getWriter();

out.println("<HTML><HEAD><TITLE>Too big</TITLE></HEAD>");

out.println("<BODY><H1>Error - content length >"+

limit+"k not allowed.");

out.println("</H1></BODY></HTML>");

} else {

doGet(req, res);

}

}

The doGet method is the main handler of the servlet. All inbound get and post
requests are routed through this routine. The doPost handler calls into this routine. First
we determine if the caller is an internal or an external user and allow or deny the call
based on that determination. Requests for certificates or photographs are processed and
return a result type of application/x-x509-email-cert or image/jpeg, respectively.
The transition from one state to another is also handled within this block.

/**

* Handles HTTP gets

* Main logic processing for our servlet. We look at the

* arguments (form elements or URL elements) and dispatch

* to the servlet methods to handle these.

*

* @param req the HTTP request

* @param res the HTTP response

*

* Exceptions can be thrown by servlet methods:

* @exception ServletException

* @exception IOException

*

*/

public void doGet(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException {

PrintWriter out = null;

boolean isInternal = checkInside(req);

String cmd = readFormData(req,ACTION_FIELD);

448 Servlets and LDAP

// Set output content type to text/html; change later

// if necessary

res.setContentType("text/html");

// All routines output HTML except cert and photo

if ((!cmd.equals(ACTION_GETCERT)) &&

(!cmd.equals(ACTION_GETPHOTO))) {

out = res.getWriter();

}

//Dispatch to the proper handler

if (cmd.equals(ACTION_SEARCH)) {

//Set response not to be cached

res.setHeader("Expires","Tues, 01 Jan 1980 00:00:00 GMT");

searchLDAP(req,out,isInternal);

} else if (cmd.equals(ACTION_DETAIL)) {

if (!isInternal) {

errorMessage(out,"Not authorized!");

} else {

detailEdit(req,out,true); //display only

}

} else if (cmd.equals(ACTION_GETCERT)) {

binaryLDAP (req, res, certAttr, "Certificate",

"application/x-x509-email-cert");

} else if (cmd.equals(ACTION_GETPHOTO)) {

if (!isInternal) {

res.setContentType("text/html");

out = res.getWriter();

errorMessage(out,"Not authorized!");

} else {

binaryLDAP (req, res, photoAttr, "Photograph",

"image/jpeg");

}

} else if (cmd.equals(ACTION_EDIT)) {

if (!isInternal) {

res.setContentType("text/html");

out = res.getWriter();

errorMessage(out,"Not authorized!");

} else {

detailEdit(req,out,false); //Edit mode

}

} else if (cmd.equals(ACTION_DOEDIT)) {

// Process user values

modifyEntry(req,out);

Our Phone Book Servlet 449

} else if (cmd.equals(ACTION_PWD)) {

sendPwdPage(req,out,isInternal);

} else if (cmd.equals(ACTION_DOPWD)) {

modifyPwd(req,out);

} else {

res.setContentType("text/html");

sendSrchPage(out,isInternal,req.getRequestURI());

}

return;

}

The following routine is the handler for all search requests. It parses the search
string and determines the type of search (by name, telephone number, etc.). The search
strings are also modified to include an asterisk at the end to allow matches with values
that begin with the search string. The search by name also includes an LDAP “sounds
like” search: "~=" (see Table 5-1). Once the search filter is validated and constructed,
we obtain a connection from the pool and issue the search request. The search utilizes
server-side sorting (if supported by the server) and calls generateRow to build each
row of the result set.

/**

* Handle search requests to the servlet.

* Retrieve arguments from the req and transmit HTML

* back to the client. Build an LDAP search request

* using server-side sorting when possible. If not

* possible, do client-side sorting (in the servlet).

*

* @param req the HTTP request

* @param out stream back to the client

* @param isInternal true if client

* is internal to organization

*/

private void searchLDAP(HttpServletRequest req,

PrintWriter out,

boolean isInternal) {

// Get search arguments

String srchType =

readFormData(req,FLDNAME_SRCHKIND).toLowerCase();

String srchString = readFormData(req,FLDNAME_SRCHSTRING);

LDAPSearchResults res=null;

LDAPConnection ld;

String appendmsg = "";

450 Servlets and LDAP

String srch = "";

String[] myAttrs;

String uri = req.getRequestURI();

boolean ssort = true; // Use server-side sorting

// Build full URL

String url = req.getScheme()+ "://" +

req.getServerName();

// Assume standard port numbers. If not, uncomment below.

// + ":" + req.getServerPort();

myAttrs = isInternal ? intAttrs : extAttrs;

// Use the attribute name for telephone number in case the

// external number is in a different attribute from

// the internal one

// myAttrs[1] is the telephone number attribute name

if (srchType.equals("all")) {

srch = "(|(cn=" + srchString + "*)" +

"(sn=" + srchString + "*)" +

"(givenName=" + srchString+ "*)" +

"("+myAttrs[1]+"=" + srchString + "*)" +

")";

} else if (srchType.equals("cn")) {

srch = "(|(cn=" + srchString + ")(cn=" +

srchString + "*)" +

"(cn~="+srchString+"))";

} else if (srchType.equals("mail")) {

srch = "(|(mail="+srchString+")" +

"(mail="+srchString+"*)" +

")";

} else if (srchType.equals("telephoneNumber")) {

srch = "(|("+myAttrs[1]+"="+srchString+")" +

"("+myAttrs[1]+"="+srchString+"*)" +

")";

} else if (srchType.equals(

"facsimiletelephoneNumber")) {

srch = "(|(facsimiletelephoneNumber="+

srchString+")" +

"(facsimiletelephoneNumber="+srchString+"*)" +

")";

}

if ((srch.length() == 0) || srchString.length() == 0) {

Our Phone Book Servlet 451

// Not a valid search type

sendSrchPage(out,isInternal,req.getRequestURI());

return;

}

ld = getLDAPConn();

try {

LDAPSearchConstraints cons =

ld.getSearchConstraints();

// Block until all results are in

cons.setBatchSize(0);

if (ssort) {

// Use server-side sorting

LDAPSortKey sortL = new LDAPSortKey("sn");

LDAPSortKey sortF = new LDAPSortKey("givenName");

LDAPSortKey sortC = new LDAPSortKey("cn");

LDAPSortKey[] sortOrder = {sortL,sortF,sortC};

//Create the server control

LDAPSortControl sortCtl =

new LDAPSortControl(sortOrder,false);

cons.setServerControls(sortCtl);

}

res = ld.search(srchRoot,

scope,

srch,

myAttrs,

false,

cons);

// If sorting on server, then check if sort worked

if (ssort) {

LDAPControl[] rControls =

ld.getResponseControls();

if (rControls != null) {

// Was there a server-side sort error?

LDAPSortControl response = null;

for(int i = 0; i < rControls.length;

i++) {

if (rControls[i] instanceof

LDAPSortControl) {

response =

(LDAPSortControl)rControls[i];

break;

}

452 Servlets and LDAP

}

If (response != null) {

int resCode =

response.getResultCode();

if (resCode !=

LDAPException.SUCCESS) {

System.err.println(

"Server side sort failed!");

ssort = false; // Do client sort

}

}

}

if (!ssort) {

// Need to sort locally

// Sort by sn, given name, and common name in

// ascending order

String[] sortattr = {"sn", "givenName", "cn"};

boolean[] ascend = {true, true, true};

res.sort(new LDAPCompareAttrNames(

sortattr,ascend));

}

} catch (LDAPException le) {

int rc = le.getLDAPResultCode();

if (rc == LDAPException.SIZE_LIMIT_EXCEEDED) {

appendmsg = "\nExceeded size limit";

} else if (rc == LDAPException.TIME_LIMIT_EXCEEDED) {

appendmsg = "\nExceeded time limit";

} else {

appendmsg = le.toString();

}

}

if (res.getCount() == 0) {

// Send an error message

errorMessage(out,"No entries matching "

+ srchString + " found.");

closeConnection(ld);

return;

}

out.println("<HTML>");

out.println("<HEAD>");

// JavaScript to display picture

out.println("<SCRIPT Language=\"JavaScript\">");

Our Phone Book Servlet 453

out.println("winopen = null;");

out.println("");

out.println("function displayPic(picName) {");

out.print(" if ((winopen != null) && ");

out.println("(!winopen.closed)) {");

out.println(" winopen.location = picName;");

out.println(" return winopen;");

out.println(" }");

out.println(" else {");

out.print(" winopen = window.open(picName,'photo',");

out.print(" 'toolbar=no,scrollbars=no,resizable=yes,");

out.print("width="+photoWinWidth);

out.println(",height="+photoWinHeight+"');");

out.println(" return winopen;");

out.println(" }");

out.println("}");

out.println("");

out.println("function winClose() {");

out.println(" if(winopen != null) winopen.close();");

out.println("}");

out.println("function doNothing() {}");

out.println("</SCRIPT>");

out.println("");

out.println("<TITLE>"+orgName+" "+

(isInternal ? "Internal" : "")+

" Phonebook</TITLE>");

out.println("</HEAD>");

out.println("<BODY BGCOLOR="+srchOutColors+

"\"onUnload=\"winClose()\">");

out.println("<CENTER><H1>"+orgName+" Search "+

"Results</H1></CENTER>");

out.println("

");

out.println("<TABLE WIDTH=\"100%\" BORDER=\"0\" "+

"CELLSPACING=\"0\">");

out.println("<TR>");

out.println("<TH><DIV ALIGN=\"LEFT\">Name</DIV></TH>");

out.println("<TH><DIV ALIGN=\"LEFT\">Phone</DIV></TH>");

out.println("<TH><DIV ALIGN=\"LEFT\">Email</DIV></TH>");

out.println("<TH><DIV ALIGN=\"LEFT\"></DIV></TH>");

out.println("</TR>");

int rowcnt = 0;

while (res.hasMoreElements()) {

454 Servlets and LDAP

try {

// Next directory entry

LDAPEntry entry = res.next();

generateRow(out,LIST_COLOR[++rowcnt%2],myAttrs,

entry,uri,url,isInternal);

} catch (LDAPReferralException e) {

; // Ignore referrals

} catch (LDAPException e) {

System.err.println("Entry read error: " +

e.toString());

// There may be valid results as well

continue;

}

}

out.println("</TABLE>");

if (appendmsg.length() > 0) {

out.println("Search error:"+appendmsg);

out.println("
");

}

out.println("

");

out.println("<P>Questions or comments email <A HREF=\""+

"mailto:"+ownMail+"\">webmaster"+

"</P>");

out.println("</BODY>");

out.println("</HTML>");

closeConnection(ld);

return;

}

There are many references in the servlet code to a JavaScript function called
doNothing. This function is there to allow a result to be returned from clicking on a
URL or Submit button. It does not perform any function other than to prevent the
action from occurring. We intercept the action and call JavaScript functions instead.

A sample of the output from a search is shown in Figure 13-5. The photograph
icon next to the entry for Barbara Jensen indicates that she has stored a photo in the
directory. Clicking on this icon will open a separate window with the photograph. This
action is handled by the routine that follows, which we use for all binary data types.

/**

* Return binary data in an HTTP stream;

* retrieve arguments from the req

*

* @param req the HTTP request

Our Phone Book Servlet 455

* @param res the HTTP response

* @param attr name of attribute in the LDAP directory to

* return

* @param name "friendly" name of the attribute to use for

* transmitting an error message

* @param mime MIME type for this binary data

* @exception ServletException

* @exception IOException

*/

private void binaryLDAP(HttpServletRequest req,

HttpServletResponse res,

String attr,

String name, String mime)

throws ServletException, IOException {

LDAPConnection ld;

LDAPEntry theEntry = null;

String[] attrs = {attr};

int err = 0;

byte[] theData = null;

456 Servlets and LDAP

FIGURE 13-5. Sample search results.

// Get form arguments

String theDN =

readFormData(req,FLDNAME_DN).toLowerCase();

if (theDN.length() == 0) {

PrintWriter out = res.getWriter();

errorMessage(out,"Error with Distingushed Name");

return;

}

theDN = LDAPUrl.decode(theDN);

ld = getLDAPConn();

try {

theEntry = ld.read(theDN,attrs);

theData = getBinaryValue(theEntry,attr);

if (theData == null) {

PrintWriter out = res.getWriter();

errorMessage(out, name + " for " + theDN +

" not found!");

err = 1;

}

} catch (LDAPException e) {

PrintWriter out = res.getWriter();

errorMessage(out,"Entry:" + theDN+" not found!");

err = 1;

} finally {

closeConnection(ld);

}

if (err == 1) {

return;

}

// Prepare to transmit binary data

res.setContentType(mime);

// Set to pre-expire

res.setHeader("Expires",

"Tues, 01 Jan 1980 00:00:00 GMT");

res.setContentLength(theData.length);

ServletOutputStream sout = res.getOutputStream();

sout.write(theData,0,theData.length);

sout.flush();

sout.close();

return;

}

Our Phone Book Servlet 457

/**

* Builds an error HTML response page

* @param out a stream back to client

* @param errmsg the error message

*/

private void errorMessage(PrintWriter out, String errmsg) {

out.println("<HTML><HEAD>");

out.println("<TITLE>Phonebook Error</TITLE>");

out.println("</HEAD>");

out.println("<BODY>

");

out.println("<CENTER><H1>Error</H1></CENTER>
");

out.println(errmsg);

out.println("
Use the back button to correct");

out.println("</BODY></HTML>");

return;

}

The checkInside method considers any machine for which the first three octets
match those of the servlet host to be internal. Using part of the IP address to determine
if the caller is from the outside is very site specific, since your location may have dif-
ferent criteria for an internal versus external user. The following code looks at the IP
source address to decide.

/**

* Report if client is inside or outside the firewall
.

* This routine must be customized for each particular

* site. Currently it just matches the first three octets

* of an IP address to determine if someone is inside the

* company.

* @param req the HTTP request

* @return true if inside firewall

*/

protected boolean checkInside(HttpServletRequest req) {

String clientIP = req.getRemoteAddr();

boolean isInside = clientIP.startsWith(hostIP);

return isInside;

}

The following method is responsible for returning an LDAPConnection to the
servlet. It requests the connection from the pool we allocated at initialization and
attaches the cache to the connection (if the cache is initialized). If no connections are
available in the pool, then the pool will block until one becomes available. There will
also be a message in the log that the pool ran out of connections.

458 Servlets and LDAP

/**

* Get an LDAPConnection from the pool,

* and assign the LDAP cache to this connection

*

* @return a valid LDAPConnection

*/

private LDAPConnection getLDAPConn() {

// Get connection from pool

LDAPConnection ld = ldapPool.getConnection();

if (readCache != null) {

ld.setCache(readCache);

}

return ld;

}

/**

* Return an LDAPConnection to the pool

*

* @param ld the connection to return to the pool

*/

private void closeConnection(LDAPConnection ld) {

if (ld != null) {

ldapPool.close(ld);

}

}

/**

* Returns the string representation of an LDAP attribute

* from the specified entry.

* If the attribute is not present or has a zero length

* value, then return "-". If the attribute has more than

* one value, then just return the first one.

*

* @param entry an LDAP entry

* @param attrN name of the attribute (e.g., "cn")

* @return value of attribute or -

*/

private String getValue(LDAPEntry entry, String attrN) {

return getValue(entry, attrN, "-");

}

/**

* Return the string representation of an LDAP attribute

Our Phone Book Servlet 459

* from the specified entry.

* If the attribute is not present or has a zero length value,

* then return the default. If the attribute has more than one

* value, then just return the first one.

*

* @param entry an LDAP entry

* @param attrN name of the attribute (e.g., "cn")

* @param defVal value to return if attribute does not

* exist

* @return value of attribute or defVal

*/

private String getValue(LDAPEntry entry,

String attrN,

String defVal) {

LDAPAttribute attr = entry.getAttribute(attrN);

if (attr == null) {

return defVal;

}

Enumeration enumVals = attr.getStringValues();

// Enumerate on values for this attribute

if ((enumVals == null) ||

!enumVals.hasMoreElements()) {

return defVal;

}

String theValue = (String)enumVals.nextElement();

if ((theValue == null) ||

(theValue.length() == 0)) {

return defVal;

}

return theValue;

}

/**

* Return the binary representation of an LDAP attribute

* value from the specified entry.

* If the attribute is not present, then return null. If the

* attribute has more than one value, then just return

* the first one.

*

* @param entry an LDAP entry

* @param attrN name of the attribute (e.g., "cn")

* @return value of attribute as byte[] or null

*/

private byte[] getBinaryValue(LDAPEntry entry,

460 Servlets and LDAP

String attrN) {

LDAPAttribute attr = entry.getAttribute(attrN);

if (attr == null) {

return null;

}

Enumeration enumVals = attr.getByteValues();

if ((enumVals == null) ||

(!enumVals.hasMoreElements())) {

return null;

}

return (byte[])enumVals.nextElement();

}

/**

* Return the LDAP scope constant for a string

* value of "SCOPE_BASE", "SCOPE_ONE" or

* "SCOPE_SUB".

*

* @param scope String representation of scope

* @return LDAPConnection constant for the scope

*/

private static int getScope(String scope) {

if (scope.equalsIgnoreCase("SCOPE_BASE")) {

return LDAPConnection.SCOPE_BASE;

} else if (scope.equalsIgnoreCase("SCOPE_ONE")) {

return LDAPConnection.SCOPE_ONE;

} else {

return LDAPConnection.SCOPE_SUB;

}

}

/**

* Return a String without attribute types in the format

* "bjensen, people, airius.com" from a DN like

* "uid=bjensen,ou=people,o=airius.com"

*

* @param theDN a fully formed DN

* @return a simplified DN without attribute types

*/

private String prettyDN(String theDN) {

String[] dn = LDAPDN.explodeDN(theDN,true);

String dncomps = "";

for (int i=0; i<dn.length; i++) {

dncomps += (i==0 ? "" : ", ") + dn[i];

Our Phone Book Servlet 461

}

return dncomps;

}

/**

* Return the String representing the HTML form value

* from the specified post or get.

* If form value does not exist or has no value,

* then return an empty String.

*

* @param req HTTPServletRequest

* @param fdname name of the field in the HTML form,

* (e.g., "password")

* @return value of field, or "" if not present

*/

private String readFormData(HttpServletRequest req,

String fdname) {

String d = req.getParameter(fdname);

if (d == null) {

return "";

}

return d.trim();

}

/**

* Build an LDAPAttribute with the specified attribute

* name and value. If no value is specified, then the

* attribute will be deleted with an LDAP replace operation.

*

* @param attrN name of attribute (e.g., "cn")

* @param attrV value for attribute (e.g., "Tom Jones"); pass

* null for none

* @return an LDAP attribute

*

*/

private LDAPAttribute buildAttr(String attrN,

String attrV) {

if (attrV == null) {

return new LDAPAttribute(attrN);

} else {

return new LDAPAttribute(attrN, attrV);

}

}

462 Servlets and LDAP

The modifyPwd method handles requests by users to change their passwords. It
accepts two copies of the new password (one for confirmation), and the old password.
The connection for this operation is allocated outside the normal pool of search con-
nections because it will use different credentials. The credentials are validated by
authenticating, and then the userPassword attribute is modified.

/**

* Handle requests for password modification by the user.

* Validate that both new passwords are OK and that the

* old password is correct (by binding to the directory).

*

* @param req HTTPServletRequest

* @param out output stream

* @exception ServletException or IOException on reading

* or writing form data

*/

private void modifyPwd(HttpServletRequest req,

PrintWriter out)

throws ServletException, IOException {

LDAPConnection ld = null;

String theDN;

String oldpw;

String newpw1;

String newpw2;

int err = 0;

// Get detail arguments (the DN)

theDN = readFormData(req,FLDNAME_DN).toLowerCase();

if (theDN.length() == 0) {

errorMessage(out,"Invalid Distingushed Name");

return;

}

theDN = LDAPUrl.decode(theDN);

oldpw = readFormData(req,FLDNAME_OLDPW);

newpw1 = readFormData(req,FLDNAME_NEWPW1);

newpw2 = readFormData(req,FLDNAME_NEWPW2);

// The passwords must pass the following tests:

// old must be valid and nonzero length

// new1 and new2 must match and be nonzero length

Our Phone Book Servlet 463

if ((!newpw1.equals(newpw2)) ||

(newpw1.length()==0)) {

errorMessage(out,"Invalid new password");

return;

}

if (oldpw.length() == 0) {

errorMessage(out,"Old password is invalid");

return;

}

// Attempt to write change.

// Do not use the pool for this operation because it

// requires special credentials.

try {

ld = new LDAPConnection();

ld.connect(host, port, theDN, oldpw);

LDAPAttribute pw =

new LDAPAttribute("userPassword",newpw1);

LDAPModification mod =

new LDAPModification(LDAPModification.REPLACE,

pw);

ld.modify(theDN, mod);

} catch (LDAPException e) {

err = 1;

int num = e.getLDAPResultCode();

if (num == LDAPException.INVALID_CREDENTIALS) {

errorMessage(out,"Invalid old password.");

} else {

errorMessage(out,e.toString());

}

}

464 Servlets and LDAP

if ((ld!= null) && (ld.isConnected())) {

try {

ld.disconnect();

} catch (LDAPException e) {}

}

if (err != 0) {

return;

}

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>"+orgName+"</TITLE>");

out.println("<SCRIPT Language=\"JavaScript\">");

out.println("function doNothing() {}");

out.println("</SCRIPT>");

out.println("");

out.println("</HEAD>");

out.println("<BODY BGCOLOR=\"white\">");

out.println("Thank you for changing your password!");

out.println("
");

out.print("<a href=\"javascript:doNothing()\" ");

out.print("onclick=\"window.close();\">");

out.println("Click Here");

out.println("</BODY>");

out.println("</HTML>");

return;

}

Our Phone Book Servlet 465

If using an NDS (Novell Directory Services) directory with an LDAP client, then a pass-
word change request must be handled a bit differently: the same operation must

specify the old password for deletion and the new password for addition. The fol-
lowing code demonstrates this technique for NDS:

LDAPModificationSet mods = new LDAPModificationSet();

mods.add(LDAPModification.DELETE,

new LDAPAttribute("userPassword",oldpw));

mods.add(LDAPModification.ADD,

new LDAPAttribute("userPassword", newpw1));

ld.modify(theDN, mods);

The modifyEntry method handles the case in which a user wants to update cer-
tain information about herself. Users are allowed to update their mobile phone num-
bers, pager numbers, and home phone numbers in this example. They are also
allowed to upload new JPEG photographs for themselves. To support uploading a file,
we use the encoding type of multipart/form-data. Included on the CD-ROM that
accompanies this book is a Java class, CParseRFC1867, that makes parsing data in this
format relatively simple. Multipart form data is treated basically as a raw input
stream, with each element inside of a properly coded boundary marker. Full details
about the format and structure can be found in RFC 1867. Customize the attribute
selection to fit the self-administration policies of your organization.

/**

* Handle editing of an individual entry.

* Remove attributes with no value, and add or replace

* attributes with new or different values.

* Use the java class

* CParseRFC187 to parse multipart forms.

* Multipart forms allow users to send new photographs

* for their entries.

*

* @param req HTTPServletRequest

* @param out output stream

* @exception ServletException or IOException on writing

* changes to the directory or writing output

*/

private void modifyEntry(HttpServletRequest req,

PrintWriter out)

throws ServletException, IOException {

LDAPConnection ld = null;

String theDN = "";

String thepw = "";

String pager = "" ;

String mobile = "";

String homePhone = "";

byte[] newPhoto = null;

int err = 0;

String conType = req.getContentType().toLowerCase();

if (conType.indexOf("multipart/form-data") == -1) {

// Standard form submit, no picture

// Get form elements

theDN = readFormData(req,FLDNAME_DN).toLowerCase();

466 Servlets and LDAP

thepw = readFormData(req,FLDNAME_OLDPW);

pager = readFormData(req,"pager");

mobile = readFormData(req,"mobile");

homePhone = readFormData(req,"homePhone");

} else {

CParseRFC1867 parse = new CParseRFC1867(req);

while (parse.hasMoreContent()) {

parse.getContent();

int nType = parse.getContentType();

switch (nType) {

case CParseRFC1867.PARAMETER :

String fldname =

parse.getParameterName().

toLowerCase();

String fldval =

parse.getParameterValue();

if (fldval == null) {

fldval = "";

}

if (fldname.equals(FLDNAME_DN)) {

theDN = fldval;

} else if (fldname.equals(

FLDNAME_OLDPW)) {

thepw = fldval;

} else if (fldname.equals(

"pager")) {

pager = fldval;

} else if (fldname.equals(

"mobile")) {

mobile = fldval;

} else if (fldname.equals(

"homephone")) {

homePhone = fldval;

} else {

System.err.println(

"invalid field->"+fldname);

}

break;

case CParseRFC1867.FILE :

String fname =

parse.getFileName().trim();

CBlobInputStream instream =

parse.getBlobInputStream();

if ((fname != null) &&

Our Phone Book Servlet 467

(!fname.equals(""))) {

instream.preFetch();

int sizePic =

instream.getTotalBytes();

if ((sizePic <= maxPhotoSize) ||

(maxPhotoSize == 0)) {

// If pic size within limits

newPhoto = new byte[sizePic];

for (int i=0;i<sizePic;i++) {

newPhoto[i] =

(byte)instream.read();

}

}

instream.close();

} else {

parse.readToNextBoundary();

}

break;

} // switch

} // while

}

if (theDN.length() == 0) {

errorMessage(out,"Invalid Distingushed Name");

return;

}

if (thepw.length() == 0) {

errorMessage(out,"Password cannot be blank");

return;

}

theDN = LDAPUrl.decode(theDN);

// Build a modification set

LDAPModificationSet mods = new LDAPModificationSet();

LDAPAttribute attr1 = buildAttr("pager",pager);

LDAPAttribute attr2 = buildAttr("mobile",mobile);

LDAPAttribute attr3 = buildAttr("homePhone",homePhone);

mods.add(LDAPModification.REPLACE,attr1);

mods.add(LDAPModification.REPLACE,attr2);

mods.add(LDAPModification.REPLACE,attr3);

if (newPhoto != null) {

LDAPAttribute attr4 =

new LDAPAttribute(photoAttr,newPhoto);

468 Servlets and LDAP

mods.add(LDAPModification.REPLACE,attr4);

}

// Attempt to write change.

// Do not use the pool for this operation because

// special credentials are required.

try {

ld = new LDAPConnection();

ld.connect(host, port, theDN, thepw);

ld.modify(theDN, mods);

if (readCache != null) {

readCache.flushEntries(theDN,

ld.SCOPE_BASE);

}

} catch (LDAPException e) {

err = 1;

int num = e.getLDAPResultCode();

if (num == LDAPException.INVALID_CREDENTIALS) {

errorMessage(out,"Invalid Password.");

} else {

errorMessage(out,e.toString());

}

}

if ((ld!= null) && (ld.isConnected())) {

try {

ld.disconnect();

} catch (LDAPException e) {}

}

if (err != 0) {

return;

}

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>"+orgName+"</TITLE>");

out.println("<SCRIPT Language=\"JavaScript\">");

out.println("function doNothing() {}");

out.println("</SCRIPT>");

out.println("");

out.println("</HEAD>");

out.println("<BODY BGCOLOR=\"white\">");

out.println("Thank you for keeping your information " +

"current!");

Our Phone Book Servlet 469

out.println("
");

out.print("<A HREF=\"javascript:doNothing()\" ");

out.print("onclick=\"window.close();\">");

out.println("Click Here");

out.println("</BODY>");

out.println("</HTML>");

return;

}

/**

* Handles requests for search page or requests that

* are not valid (we send the search page)

*

* @param out output stream

* @param isInternal true if internal user

* @param uri the servlet's uniform resource identifier

*

*/

private void sendSrchPage(PrintWriter out,

boolean isInternal,

String uri) {

// Dump the search page

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>"+orgName+" "+

(isInternal ? "Internal" : "")+

" Phonebook</TITLE>");

out.println("</HEAD>");

out.println("<BODY BGCOLOR="+srchPageColors+">");

out.println("<H2 ALIGN=\"center\">"+orgName+

" Phonebook</H2>");

out.println("<P>The "+orgName+" Phone Book allows you"+

" to locate an individual within the "+

"company.");

out.println("Please enter your search ");

out.println("string below. You may search for phone "+

"number, email, etc....</P>");

out.print("<FORM METHOD=\"post\" action=\""+ uri + "?");

out.println(ACTION_FIELD+"="+ACTION_SEARCH+"\">");

out.println("<CENTER>");

out.println("<TABLE WIDTH=\"75%\" BORDER=\"0\">");

470 Servlets and LDAP

out.println("<TR>");

out.println("<TD>");

out.println("<DIV ALIGN=\"right\">Search:</DIV>");

out.println("</TD>");

out.println("<TD>");

out.println("<SELECT NAME="+FLDNAME_SRCHKIND+">");

out.println("<OPTION VALUE=\"all\">Anything</OPTION>");

out.println("<OPTION VALUE=\"cn\" selected>"+

"Name</OPTION>");

out.println("<OPTION VALUE=\"mail\">"+

"Electronic Mail</OPTION>");

out.println("<OPTION VALUE=\"telephoneNumber\">"+

"Phone Number</OPTION>");

out.println("<OPTION VALUE=\""+

"facsimiletelephoneNumber\">"+

"Fax Number</OPTION>");

out.println("</SELECT>");

out.println("</TD>");

out.println("</TR>");

out.println("<TR>");

out.println("<TD> </TD>");

out.println("<TD>");

out.println("<INPUT TYPE=\"text\" name="+

FLDNAME_SRCHSTRING+" size=\"40\""+

" maxlength=\"60\">");

out.println("</TD>");

out.println("</TR>");

out.println("</TABLE>");

out.println("</CENTER>");

out.println("
");

out.print("<CENTER><INPUT TYPE=\"submit\" ");

out.println("name=\"Submit\" value=\"Search\">"+

"</CENTER>");

out.println("</FORM>");

out.println("
");

out.println("<P>Questions or comments email "+

""+

"webmaster</P>");

out.println("</BODY>");

out.println("</HTML>");

return;

}

Our Phone Book Servlet 471

/**

* Handles requests for password change page

*

* @param req HttpServletRequest

* @param out output stream

* @param isInternal true if internal user

* @exception throws ServletException or IOException for

* invalid URL or error on writing output

*

*/

private void sendPwdPage(HttpServletRequest req,

PrintWriter out,

boolean isInternal)

throws ServletException, IOException {

String theDN;

String theDNd;

String uri = req.getRequestURI();

// Get the DN of the record we are altering

theDN = readFormData(req,FLDNAME_DN).toLowerCase();

theDN = LDAPUrl.decode(theDN);

if (theDN.length() == 0) {

errorMessage(out,"Error with Distingushed Name");

return;

}

out.println("<HTML>");

out.println("<HEAD>");

out.println("<TITLE>"+orgName+"</TITLE>");

out.println("<SCRIPT Language=\"JavaScript\">");

out.println("function doNothing() {}");

out.println("</SCRIPT>");

out.println("");

out.println("</HEAD>");

out.println("<BODY BGCOLOR=\"white\">");

out.print("<FORM METHOD=POST name=\"PwdModForm\"");

out.print("action=\""+uri+"?"+ACTION_FIELD+"=");

out.println(ACTION_DOPWD+"\">");

out.print("<INPUT TYPE=\"hidden\" name=\""+FLDNAME_DN);

out.println("\" value=\""+LDAPUrl.encode(theDN)+"\">");

472 Servlets and LDAP

String dncomps = prettyDN(theDN);

out.println(""+dncomps+"
");

out.println("
");

out.print("<TABLE CELLSPACING=\"2\" ");

out.println("BORDER BGCOLOR=#F2F2F2 WIDTH=60%>");

out.println("<TR>");

out.print("<TD BGCOLOR=#006666>");

out.print("");

out.println(" New Password</TD>");

out.println("</TR>");

out.println("<TR>");

out.println("<TD VALIGN=\"TOP\" NOWRAP>");

out.print("<INPUT TYPE=\"password\" name=");

out.print(FLDNAME_NEWPW1+" size=\"20\" ");

out.println("MAXLENGTH=\"20\">");

out.println("</TD>");

out.println("</TR>");

out.println("<TR>");

out.println("<TD VALIGN=\"TOP\" NOWRAP>");

out.print("<INPUT TYPE=\"password\" NAME=");

out.print(FLDNAME_NEWPW2+" size=\"20\" ");

out.println("MAXLENGTH=\"20\">");

out.println("Confirm New Password</TD>");

out.println("</TR>");

out.println("</TABLE>");

out.println("
");

out.print("<TABLE CELLSPACING=\"2\" BORDER ");

out.println("BGCOLOR=#F2F2F2 WIDTH=60%>");

out.println("<TR>");

out.print("<TD BGCOLOR=#006666>");

out.print("");

out.println(" Old Password");

out.println("</TD>");

out.println("</TR>");

out.println("<TR>");

out.println("<TD VALIGN=\"TOP\" NOWRAP>");

out.print("<INPUT TYPE=\"password\" NAME=");

out.print(FLDNAME_OLDPW+" SIZE=\"20\" ");

out.println("MAXLENGTH=\"20\">");

out.println("</TD>");

out.println("</TR>");

out.println("</TABLE>");

out.println("
");

Our Phone Book Servlet 473

out.print("<CENTER><INPUT TYPE=\"submit\" NAME=\"");

out.print("submit\" VALUE=\"Change Password");

out.println("\"></CENTER>");

out.println("</FORM>");

out.println("
");

out.print("<A HREF=\"javascript:doNothing()\" ");

out.print("onclick=\"window.close();\">");

out.println("Cancel Password Modify");

out.println("</BODY>");

out.println("</HTML>");

return;

}

/**

* Generates a single row for the search results page.

*

* @param out PrintWriter for output stream

* @param color background color for this row

* @param attrs the names of the attributes for this row

* for each of the five columns

* @param entry containing the data for this row

* @param uri the servlet's uniform resource identifier

* @param url complete URL to get back to servlet

* @param isInternal true if internal user

*

*/

private void generateRow(PrintWriter out, String color,

String[] attrs, LDAPEntry entry,

String uri, String url,

boolean isInternal) {

// Generate one row of output data

String theDN = LDAPUrl.encode(entry.getDN()); // Encode

String theName = getValue(entry,attrs[0]);

String thePhone = getValue(entry,attrs[1]);

String theMail = getValue(entry,attrs[2]);

String certimg = " ";

String photoimg = " ";

String nameurl = theName;

// Most of this is building the custom line based on

// whether the caller is an external or internal user.

// External users are not allowed to click on the name for

474 Servlets and LDAP

// details, among other things.

byte[] theCert = getBinaryValue(entry,certAttr);

if (theCert != null) { // Has cert so give url

certimg = "<A HREF=\""+uri+"?"+ACTION_FIELD+"="+

ACTION_GETCERT+

"&"+FLDNAME_DN+"="+theDN+"\"><IMG SRC=\""+

imagesURL+

"cert.gif\" WIDTH=24 HEIGHT=21 BORDER=0 " +

"alt=\"Get digital certificate\">";

}

byte[] thePhoto = getBinaryValue(entry,attrs[4]);

if (thePhoto != null && isInternal) {

photoimg = "<A HREF=\"javascript:doNothing()\" " +

"onclick=\"winopen=displayPic('"+url+uri+"?"+

ACTION_FIELD+"="+ACTION_GETPHOTO+"&"+

FLDNAME_DN+"="+theDN+"');\"><IMG SRC=\""+imagesURL+

"photo.gif\" WIDTH=37 HEIGHT=21 BORDER=0 " +

"alt=\"Look at Photograph\">";

}

if (isInternal) {

nameurl = "<A HREF=\""+uri+"?"+ACTION_FIELD+"="+

ACTION_DETAIL+

"&"+FLDNAME_DN+"="+theDN+"\">"+theName+"";

}

//Colors are either "#666600" or "#009999"

out.println("<TR BGCOLOR=\""+color+"\">");

out.println("<TD>"+nameurl+"</TD>");

out.println("<TD>"+thePhone+"</TD>");

if (theMail.equals("-")) {

out.println("<TD> - </TD>");

} else {

out.println("<TD>" +

theMail + "</TD>");

}

out.println("<TD>"+certimg+" "+photoimg+"</TD>");

out.println("</TR>");

}

The detailEdit routine, which follows, is used to handle both detail views and
preparation of the edit record for an individual entry. A detail view of Barbara Jensen
is shown in Figure 13-6. The edit view shown in Figure 13-7 is similar, with fields for

Our Phone Book Servlet 475

editing shown as standard HTML input tags. The user is also allowed to upload a new
photo if desired.

/**

* Handles requests for detail view and edit pages

*

* @param req HttpServletRequest

* @param out PrintWriter

* @param detail true if detail view;

* (view only) if edit page

* @exceptions ServletException or IOException on reading

* from directory or writing output

*

*/

476 Servlets and LDAP

FIGURE 13-6. Sample detail view.

private void detailEdit(HttpServletRequest req,

PrintWriter out,

boolean detail)

throws ServletException, IOException {

LDAPConnection ld;

LDAPEntry theEntry = null;

String theDN;

int err = 0;

String uri = req.getRequestURI();

String imgURL = "";

// If detail is true, then show the record and

// allow editing of certain fields

Our Phone Book Servlet 477

FIGURE 13-7. Overview of edit screen.

// Get detail arguments (the DN)

theDN = readFormData(req,FLDNAME_DN).toLowerCase();

if (theDN.length() == 0) {

errorMessage(out,"Error with Distingushed Name");

return;

}

theDN = LDAPUrl.decode(theDN);

ld = getLDAPConn();

try {

theEntry = ld.read(theDN); // Read entry

} catch (LDAPException e) {

errorMessage(out,"Entry:" + theDN+" not found!");

closeConnection(ld);

return;

}

String cn = getValue(theEntry,"cn");

String dncomps = prettyDN(theEntry.getDN());

// Format a detail record for this entry

out.println("<HTML><HEAD>");

if (detail) {

out.println("<TITLE>Detail for "+cn+"</TITLE>");

} else {

out.println("<TITLE>Edit for "+cn+"</TITLE>");

}

out.println("</HEAD>");

out.println("<BODY BGCOLOR=\"#FFFFFF\">");

out.println(""+dncomps+"");

out.println("
");

//If edit, put a form tag in there

if (!detail) {

out.print("<FORM METHOD=\"post\" ACTION=\"");

out.print(uri+"?"+ACTION_FIELD+"="+ACTION_DOEDIT);

out.println("\" ENCTYPE=\"multipart/form-data\">");

}

if (detail) {

out.println("<DIV ALIGN=\"right\">");

out.println("<A HREF=\""+uri+"?"+ACTION_FIELD+"="+

ACTION_EDIT+"&"+FLDNAME_DN+"="+

LDAPUrl.encode(theDN)+"\" "+

"TARGET=\"_blank\">"+

"<IMG SRC=\""+imagesURL+

478 Servlets and LDAP

"edit.gif\" alt=\"Edit this entry.\">"+

"");

out.println("<A HREF=\""+uri+"?"+ACTION_FIELD+"="+

ACTION_PWD+"&"+FLDNAME_DN+"="+

LDAPUrl.encode(theDN)+"\" "+

"TARGET=\"_blank\">"+

"<IMG SRC=\""+imagesURL+

"pwd.gif\" alt=\"Change password.\">"+

"</DIV>");

}

out.println("
");

out.println("<TABLE CELLSPACING=\"2\" " +

"BORDER BGCOLOR=#F2F2F2 WIDTH=95%>");

out.println("<TR>");

out.println("<TD BGCOLOR=#006666 COLSPAN=4>"+

""+

"Contact Information</TD>");

out.println("</TR>");

out.println("<TD VALIGN=\"top\" NOWRAP>First Name:"+

"</TD>");

out.println("<TD VALIGN=\"top\" NOWRAP>"+

getValue(theEntry,"givenName")+

"</TD>");

out.println("<TD VALIGN=\"top\" NOWRAP ROWSPAN=\"2\""+

">Full Name:</TD>");

out.println("<TD VALIGN=\"top\" NOWRAP ROWSPAN=\"2\""+

">"+cn+"</TD></TR>");

out.println("<TR>");

out.println("<TD VALIGN=\"top\" NOWRAP>Last Name:"+

"</TD>");

out.println("<TD VALIGN=\"top\" NOWRAP>"+

getValue(theEntry,"sn")+"</TD></TR>");

out.println("<TR>");

out.println("<TD VALIGN=\"TOP\">Phone:</TD>");

out.println("<TD VALIGN=\"TOP\" NOWRAP>"+

getValue(theEntry,"telephoneNumber")+

"</TD>");

out.println("<TD VALIGN=\"TOP\" NOWRAP>"+

"E-Mail Address:</TD>");

Our Phone Book Servlet 479

String email = getValue(theEntry,"mail");

if (!email.equals("-")) {

email = ""+email+"";

}

out.println("<TD VALIGN=\"TOP\" NOWRAP>"+

email+"</TD></TR>");

out.println("<TR>");

out.println("<TD VALIGN=\"TOP\">Fax:</TD>");

out.println("<TD VALIGN=\"TOP\" nowrap>"+

getValue(theEntry,"facsimiletelephoneNumber")

+"</TD>");

out.println("<TD VALIGN=\"TOP\" nowrap>User ID:</TD>");

out.println("<TD VALIGN=\"TOP\" nowrap>"+

getValue(theEntry,"uid")+"</TD></TR>");

out.println("<TR>");

out.println("<TD VALIGN=\"TOP\" nowrap>Pager:</TD>");

out.println("<TD VALIGN=\"TOP\" nowrap>");

if (detail) {

out.println(getValue(theEntry,"pager")+"</TD>");

} else {

out.println("<input type=\"text\" name=\"pager\" "+

"size=\"20\" maxlength=\"20\" value=\""+

getValue(theEntry,"pager","")+"\"></TD>");

}

out.println("<TD VALIGN=\"TOP\" nowrap>Mobile Phone:"+

"</TD>");

out.println("<TD VALIGN=\"TOP\" nowrap>");

if (detail) {

out.println(getValue(theEntry,"mobile")+"</TD></TR>");

} else {

out.println("<input type=\"text\" name=\"mobile\" "+

"size=\"20\" maxlength=\"20\" value=\""+

getValue(theEntry,"mobile","")+"\">"+

"</TD></TR>");

}

out.println("<TR>");

out.println("<TD VALIGN=\"TOP\" nowrap>Home Phone:</TD>");

480 Servlets and LDAP

out.println("<TD VALIGN=\"TOP\" nowrap>");

if (detail) {

out.println(getValue(theEntry,"homePhone")+""+

"</TD>");

} else {

out.println("<input type=\"text\" name=\"homePhone\" "+

"size=\"20\" maxlength=\"20\" value=\""+

getValue(theEntry,"homePhone","")+"\">"+

"</TD>");

}

// Display photograph if present

out.println("<TD VALIGN=\"TOP\" nowrap>Photograph:</TD>");

out.print("<TD VALIGN=\"TOP\" nowrap>");

if (getBinaryValue(theEntry,photoAttr) != null) {

imgURL = "<IMG SRC=\""+uri+"?"+ACTION_FIELD+"="+

ACTION_GETPHOTO+"&"+FLDNAME_DN+"="+

LDAPUrl.encode(theDN)+"\" width=\"70\" height=\"70\">";

} else {

imgURL = "-";

}

if (!detail) {

//Put a browse-for-new-picture button

imgURL += "
<INPUT TYPE=FILE NAME="+

FLDNAME_NEWPHOTO+">";

}

imgURL += "</TD>";

out.println(imgURL);

out.println("</TABLE>");

out.println("

");

// Business and location information in this section

out.println("<TABLE CELLSPACING=\"2\" " +

"BORDER BGCOLOR=#F2F2F2 WIDTH=95%>");

out.println("<TR>");

out.println("<TD BGCOLOR=#006666 COLSPAN=4>"+

""+

"Business and "+

"Location Information"+

"</TD>");

out.println("</TR>");

out.println("<TR>");

out.println("<TD VALIGN=\"TOP\">Building:</TD>");

Our Phone Book Servlet 481

out.println("<TD VALIGN=\"TOP\" nowrap>"+

getValue(theEntry,"buildingName")+

"</TD>");

out.println("<TD VALIGN=\"TOP\">Title:</TD>");

out.println("<TD VALIGN=\"TOP\" nowrap>"+

getValue(theEntry,"title")+"</TD>");

out.println("</TR>");

out.println("<TR>");

out.println("<TD VALIGN=\"TOP\">Manager:</TD>");

String mgr = getValue(theEntry,"manager");

String mgrPhone = "-";

if (!mgr.equals("-")) {

String[] mgrAttrs = {"cn","telephoneNumber"};

try {

LDAPEntry mgrEntry = ld.read(mgr,mgrAttrs);

String mgrdn = LDAPUrl.encode(mgr);

String mgrName = getValue(mgrEntry,mgrAttrs[0]);

mgrPhone = getValue(mgrEntry,mgrAttrs[1]);

mgr = "<A HREF=\""+uri+"?"+ACTION_FIELD+"="+

ACTION_DETAIL+"&"+FLDNAME_DN+"="+

mgrdn+"\">"+mgrName+"";

} catch (LDAPException e) {

mgr = "-";

}

}

out.println("<TD VALIGN=\"TOP\" NOWRAP>"+

mgr+"</TD>");

out.println("<TD VALIGN=\"TOP\">Mgr. Phone:</TD>");

out.println("<TD VALIGN=\"TOP\" NOWRAP>"+

mgrPhone+"</TD>");

out.println("</TR>");

out.println("<TR>");

out.println("<TD VALIGN=\"TOP\">City:</TD>");

out.println("<TD VALIGN=\"TOP\">"+

getValue(theEntry,"l")+"</TD>");

out.println("<TD VALIGN=\"TOP\">State:</TD>");

out.println("<TD VALIGN=\"TOP\">"+

getValue(theEntry,"st")+"</TD>");

482 Servlets and LDAP

out.println("</TR>");

out.println("<TR>");

out.println("<TD VALIGN=\"TOP\">Mailing Address:</TD>");

out.println("<TD VALIGN=\"TOP\" COLSPAN=\"4\" "+

"NOWRAP>");

String postAddr = getValue(theEntry,"l","")+", "+

getValue(theEntry,"st","")+" "+

getValue(theEntry,"postalCode","");

if (postAddr.length() < 5) { //none stored

postAddr = "";

}

out.println(getValue(theEntry,"postalAddress")+"
");

out.println(postAddr+"</TD>");

out.println("</TR>");

out.println("</TABLE>");

if (!detail) {

// Prompt for password

out.println("
 Password: ");

out.println("<INPUT TYPE=\"password\" name=\""+

FLDNAME_OLDPW+"\" size=\"20\""+

" maxlength=\"20\">
");

out.println("
<CENTER>");

out.println("<INPUT TYPE=\"submit\" NAME=\"Submit\""+

" VALUE=\"Submit\">");

out.println("<INPUT TYPE=\"reset\" NAME=\"Reset\""+

" VALUE=\"Reset\">");

out.println("</CENTER>
");

out.print("<INPUT TYPE=\"hidden\" NAME=\""+

FLDNAME_DN);

out.println("\" VALUE=\""+LDAPUrl.encode(theDN)+

"\">");

out.println("</FORM>");

}

out.println("</BODY></HTML>");

closeConnection(ld);

}

}

Our Phone Book Servlet 483

Setting Up and Using the Servlet

The servlet classes should be placed in the directory where your servlet engine
expects class files. You will also need to place the CParseRFC1867.class,
CBlobInputStream.class, LDAPConnectionPool.class, and
LDAPConnectionPool$LDAPConnectionObject.class files in this directory.
Next, place the images files in a directory that is available from your Web server.
The path to this location should be set in the phonebook.properties file. Execute
the servlet by accessing the URL for your servlet engine; in your Web browser
you will most likely receive the message shown in Figure 13-8.

Locate the file phonebook.properties on the hard drive of your server. The
JRun engine from Live Software, for example, looks for properties files in the /jrun/
jsm-default directory. Add your properties to the phonebook.properties file. It is a
standard resource bundle text file. A sample follows:

Properties for Phonebook servlet

host name, port, and search root of directory server

host=localhost

port=389

srchroot=o=airius.com

484 Servlets and LDAP

FIGURE 13-8. Message indicating that the properties file could not be found.

name for header on pages

orgname=Airius Communications

e-mail address of owner of service

ownmail=webmaster@airius.com

URL for graphics - if local then specify off HTTP root

imgurl = /phonebook/images/

initial size of connection pool

initpool=10

maximum size of connection pool

maxpool=20

connection authentication DN

authdn=

connection authentication password

authpw=

max photograph size in bytes

maxphotosize=100000

cache size in bytes (max=1000000 = 1MB); 0=no caching

cachesize=1000000

cache timeout in seconds

cachetime=3600

This file is consulted by the servlet upon start-up and can be used to alter specific
values without modifying the source code. Two particular settings that may need
adjustment are the initial pool size and the maximum size. When making changes to
these settings, the servlet will need restarting to read the new values.

The servlet wraps most of the LDAP SDK functionality into a few key methods
and makes heavy use of the pool. One characteristic of connection-pooling systems on
most servlet engines is that the initial user of the system experiences a significant delay
as the connection pool is constructed. Subsequent users do not see this delay. Some
newer servlet engines (including JRun and Netscape’s Enterprise Server 4.0) support
preloading of servlets, prior to the first request from a client.

Servlet performance should be monitored by review of the logs. If users are com-
plaining of not being able to access the system, more than likely the connection pool

Setting Up and Using the Servlet 485

needs to be increased. Anytime a connection pool needs to be enlarged, there will be a
message on the servlet console. The initial pool allocation is 10 connections, with a
maximum of 20. The LDAPConnectionPool class also supports a debug mode that will
send more messages to the console; enable debug printouts sparingly, since the debug
mode decreases performance.

Tips for Servlet Developers

Maximizing servlet performance requires techniques somewhat different from those
used to maximize the performance of stand-alone programs. One important step is to
avoid having to connect to the LDAP server for each request. The connection-pooling
model presented in this chapter solves this problem.

Another step to increase performance is to make use of the caching module of the
SDK to avoid having to go out on the wire to satisfy repetitive searches. The cache object
can be queried to see how many requests are being satisfied from the cache versus going
to the directory. See Chapter 15 for details on how and when to use LDAPCache.

Finally, keep the DN of each record around to use as a key for direct access to a
user’s entry, instead of doing additional searches to find the entry when user attributes
are needed.

Conclusion

This chapter has introduced the use of the Java LDAP SDK as a key component of a
substantial server-side application. A connection-pooling class will benefit the devel-
opment of almost any servlet involving LDAP. Directory SDK for Java 4.0 includes
the class netscape.LDAP.ConnectionPool for this purpose. A servlet can allocate
multiple connection pools for different purposes—for example, one for each LDAP
server it connects to. The phone book servlet also demonstrates the dynamic creation
of HTML based on LDAP queries and data.

486 Servlets and LDAP

P A R T I V

BEYOND
THE BASICS

C H A P T E R 1 4 Options and
Constraints

C H A P T E R 1 5 Odds and Ends

C H A P T E R 1 6 Advanced Topics

In this chapter we will focus on the many different options and settings that you can
impose on LDAP operations. These settings affect how results are returned, how the

client deals with these results, and how much work needs to be done on the receiving
end to process the requested data. Understanding the options and constraints settings
available in the SDK is essential for efficient use of an LDAP directory.

How Do They Affect Me?

Options and constraints indicate to the SDK and the server how you want data and
limits to be handled. For example, a search of an LDAP directory can result in the
return of a referral rather than the actual entry meeting the search criteria. This referral
names another host LDAP directory that holds the actual data. Instead of writing code
to examine the results and follow referrals to additional servers, you can have the SDK
follow referrals for you. If you set the option for automatic referral following, the SDK
will connect to the referred-to server and obtain the data. This is just one example of
how awareness of the available options can simplify your programming tasks.

For the most part within this chapter we will use the terms “options” and
“constraints” interchangeably. They refer to the same thing: settings that affect a
single or many LDAP operations. The SDK uses the LDAPConstraints and
LDAPSearchConstraints classes to encapsulate constraints and options.

Options can be set for a connection. When an option is set on a connection, it
affects all operations issued over that connection. Furthermore, any connections that
are cloned from this connection will have the same constraints as the original connec-
tion. An option that is specified by a constraints parameter supplied to a particular
operation, such as a search, overrides the default options of the connection for that
operation only.

Options and
Constraints

489

C H A P T E R 1 4

A View into Options

If you want to set a default option for a connection object, use the setOption method
of LDAPConnection. Once the option has been set, any operations with this connec-
tion will use this option, unless you specifically override the option by supplying a
constraints object when invoking the operation. The setOption method takes an inte-
ger argument to indicate which option is being set, and an Object argument for the
value. The constant integer values for options are defined in LDAPConnection. Settings
that are not Object arguments must be wrapped in an Object when calling setOption.
For example, to set the maximum number of search results to return on any opera-
tion, you can use the following code:

ldc.setOption(ldc.SIZELIMIT, new Integer(20));

You can query the value of any option in an LDAPConnection object with
getOption—for example:

int sizeLimit = ((Integer)ldc.getOption(ldc.SIZELIMIT)).intValue();

You can also set many options at once with the setConstraints method of
LDAPConnection. The setConstraints method takes an LDAPConstraints object as
its parameter. An LDAPConstraints object is constructed using one of the following:

LDAPConstraints cons = new LDAPConstraints();

LDAPConstraints cons =

new LDAPConstraints(int msLimit,

boolean doReferrals,

LDAPRebind reauth,

int hop_limit);

LDAPConstraints cons =

new LDAPConstraints(int msLimit,

boolean doReferrals,

LDAPBind binder,

int hop_limit);

LDAPConstraints cons = ldc.getConstraints();

The constructor with no parameters implies using the default values, which are
listed in Table 14-1. Referrals can be processed automatically in two ways: one uses an
LDAPBind object; the other uses LDAPRebind. There are therefore different constructors
for the two cases. A convenient way to create a constraints object is by obtaining a
copy from an LDAPConnection, as in the final variant above, ensuring that the object
starts off with any settings that have been applied to the connection up to that point.

490 Options and Constraints

After the object is created, the settings may be applied to a connection as follows:

ldc.setConstraints(cons);

The parameters used with LDAPConstraints will be explained shortly. An individ-
ual option for an LDAPConnection may be altered or retrieved by using the setOption
and getOption methods for that option, as summarized in Table 14-1. The corre-
sponding property in LDAPConstraints is accessed with the get and set methods for
the property—for example, getTimeLimit to get the TimeLimit property.

To have the client wait only 10 milliseconds for results back from the directory
server for all operations on this connection, use the following:

ldc.setOption(ldc.TIMELIMIT, new Integer(10));

To prepare a constraints object for use with one or more operations, use the
setTimeLimit method:

cons.setTimeLimit(10);

Let’s examine what each of these options does for a connection.

TimeLimit

The TimeLimit value specifies the maximum time in milliseconds to wait for results from
the server. If an operation does not complete within the designated time interval, an
LDAPException with a result code of TIME_LIMIT_EXCEEDED will be thrown. If a value of
0 is specified, then no limit will be set on the time to wait. This limit is enforced by the
SDK, not by the server. The default value for this setting within the SDK is 0 (no limit).

A View into Options 491

TABLE 14-1. OPTIONS IN LDAPCONSTRAINTS.

PROPERTY DATA TYPE DEFAULT VALUE LDAPCONNECTION OPTION

TimeLimit int 0 (no limit) TIMELIMIT

Referrals boolean false REFERRALS

BindProc LDAPBind null REFERRALS_BIND_PROC

RebindProc LDAPRebind null REFERRALS_REBIND_PROC

HopLimit Int 10 REFERRALS_HOP_LIMIT

Referrals

A server that does not hold requested information may return a referral on an LDAP
operation. The client must then connect to the referred-to server to obtain the real
information. The options that control the processing of referrals are discussed
in detail in Chapter 16. The default value for this setting is false (not to follow
referrals).

BindProc

This property allows you to specify an object that will manage authentication during
the processing of a referral. The object must implement the bind method:

public void bind (LDAPConnection ldc) throws LDAPException

LDAPConnection will call this method when authenticating while following a
referral. The application is responsible for reconnecting the connection object if neces-
sary and for authenticating, using whatever credentials are required. See Chapter 16
for details on using LDAPBind. The default value for this setting is null (which indi-
cates that a RebindProc should be used for reauthentication, if specified, or that refer-
rals should be followed using anonymous authentication).

ReBindProc

This property specifies an object that implements the LDAPRebind interface. It is
used when the following of a referral requires more than an anonymous bind to
authenticate, but it will use a DN and password (not a SASL mechanism). If you set
referral handling to true and use null for both the BindProc and the RebindProc
properties, the SDK will use anonymous authentication. The default value for this set-
ting is null.

HopLimit

If a referral is encountered during the execution of an operation, and referral handling
is true, the SDK will make a new temporary connection to the referred-to server if nec-
essary and continue the operation there. Every reference to a different server is consid-
ered an additional hop. The HopLimit option tells the SDK how many different
connections it should follow before throwing an LDAPException with a result code of
REFERRAL_LIMIT_EXCEEDED. The following instruction will set the hop limit for a par-
ticular constraints object to three:

492 Options and Constraints

cons.setHopLimit(3);

The main purposes of the limit are to prevent endless loops (if a server is miscon-
figured so that a referral points back to itself, for example) and to allow a client to
limit the network activity of an application within a complicated referral environ-
ment. The default value for this setting is 10.

Constraints for Searching

The LDAPSearchConstraints object extends LDAPConstraints by adding options
that apply only to search operations. You can use an LDAPSearchConstraints object
anywhere you can use an LDAPConstraints object, but the options that are specific to
searching will be ignored for all operations other than search. Construct an
LDAPSearchConstraints object with one of the following:

public LDAPSearchConstraints ();

public LDAPSearchConstraints (int msLimit,

int serverTimeLimit,

int dereference,

int maxResults,

boolean doReferrals,

int batchSize,

LDAPRebind reauth,

int hop_limit);

public LDAPSearchConstraints (int msLimit,

int serverTimeLimit,

int dereference,

int maxResults,

boolean doReferrals,

int batchSize,

LDAPBind bind,

int hop_limit);

LDAPSearchConstraints cons = ldc.getSearchConstraints();

Search constraints can be applied to a connection or supplied as a parameter to a
search operation.

The properties in boldface in Table 14-2 are identical to the properties in the
superclass LDAPConstraints. For example, the TimeLimit property has the same
functionality whether applied to an individual search or to the connection.

Constraints for Searching 493

Let’s examine how to retrieve the current settings from an LDAPConnection and
add an additional setting for a search:

// ldc is an LDAPConnection

LDAPSearchConstraints cons =

(LDAPSearchConstraints)ldc.getSearchConstraints();

// Retrieve all results at once (block when enumerating the

// search results)

cons.setBatchSize(0);

// cons can be passed to the search method

// and affects only this particular operation

LDAPSearchResults res = ldc.search(base, int scope,

filter, attrs,

false,

cons);

We could have constructed the search constraints manually using the
LDAPSearchConstraints constructor, but it is often useful to obtain the current set-
tings and tweak one or two values for a particular operation.

494 Options and Constraints

TABLE 14-2. Search options.

PROPERTY DATA TYPE DEFAULT VALUE LDAPCONNECTION OPTION

TimeLimit int 0 (no limit) TIMELIMIT

ServerTimeLimit int 0 (no limit) SERVERTIMELIMIT

Dereference int DEREF_NEVER DEREFERENCE

MaxResults int 1000 MAXRESULTS

Referrals boolean false REFERRALS

BatchSize int 1 BATCHSIZE

BindProc LDAPBind null REFERRALS_BIND_PROC

RebindProc LDAPRebind null REFERRALS_REBIND_PROC

HopLimit int 10 REFERRALS_HOP_LIMIT

MaxBackLog int 100 MAXBACKLOG

Let’s examine each of the new settings that are available as part of the
LDAPSearchConstraints. We will not examine the settings that have already been
defined for the connection constraints, because they have the same functionality. The
additional settings that are part of the LDAPSearchConstraints are ServerTimeLimit,
Dereference, MaxResults, BatchSize, and MaxBackLog.

ServerTimeLimit

The server time limit specifies the maximum amount of time, in seconds, that the server
should spend on returning results to the client. The server may have been configured
with its own limit. If so, the value used by the server for the operation will be the lesser
of the value specified by the client and the value configured for the server. If the search
operation requires more time to complete than is allowed, an LDAPException with a
result code of TIME_LIMIT_EXCEEDED will be thrown. If a value of 0 is specified, then
no limit will be set on the time to wait for results (except for any limit configured for
the server itself).

With Netscape Directory Server, the Directory Manager is not subject to the time
or size limits configured for other users. If you are doing a search that would take the
server longer than its configured time limit to process fully or would produce more
results than it is configured to return, you will need to authenticate as the Directory
Manager to receive all results. The default value for this setting is 0 (no limit).

In most cases when you receive an exception because the size or time limit was
exceeded, you would still like to process the results that were returned. The following
code illustrates how to note the exception but continue processing any results that
were received.

// Loop on results until complete

while (res.hasMoreElements()) {

try {

// Next directory entry

LDAPEntry entry = res.next();

prettyPrint(entry, ATTRS);

} catch (LDAPReferralException e) {

// Ignore referrals

continue;

} catch (LDAPException e) {

int errCode = e.getLDAPResultCode();

if (errCode ==

LDAPException.SIZE_LIMIT_EXCEEDED) {

System.out.println("Size limit exceeded!");

} else if (errCode ==

Constraints for Searching 495

LDAPException.TIME_LIMIT_EXCEEDED) {

System.out.println("Time limit exceeded!");

} else {

System.out.println(e.toString());

}

continue;

}

}

Some may argue that continuing on an error is unusual, but when returning
search results, for instance, it often makes sense to show the ones returned prior to the
error. For example, if a user enters a search criterion that returns 10,000 records, it
may be appropriate to show the first 100 returned entries and suggest that the user
narrow the scope of the search.

The sample program SearchWithLimits in this chapter lets you experiment
with different settings for time limit and size limit:

java SearchWithLimits <host> <port> <authdn> <password> <baseDN>

<filter><server time> <size limit>

Examples:

java SearchWithLimits localhost 389 "" "" "o=airius.com"

"(|(cn=sam*)(cn=b*))" 5 2

DN: uid=scarter, ou=People, o=airius.com

cn: Sam Carter

mail: scarter@airius.com

telephoneNumber: +1 408 555 4798

——————————

DN: uid=bhall, ou=People, o=airius.com

cn: Benjamin Hall

mail: bhall@airius.com

telephoneNumber: +1 408 555 6067

——————————

Size limit exceeded!

or

java SearchWithLimits slow.acme.com 60000 "" "" "o=acme.com"

"objectclass=*" 1 10000

DN: o=mcom.com

cn not present

mail not present

496 Options and Constraints

telephoneNumber not present

...

——————————

DN: cn=PD Managers,ou=groups,o=mcom.com

cn: PD Managers

mail not present

telephoneNumber not present

——————————

Time limit exceeded!

Dereference

This setting determines how aliases will be handled. An alias is an entry that points to
another entry, possibly on another server. Alias entries are similar in function to sym-
bolic links (UNIX) or shortcuts (Windows). An alias entry is of the object class alias
and has an attribute named aliasedObjectName, which contains the DN of the entry
that contains the real data. The use of aliases can affect server performance, and not
all directory servers support this function. Netscape Directory Server does not support
aliases and will ignore this setting. The following are valid options for this setting:

• DEREF_NEVER specifies that aliases are never dereferenced.

• DEREF_FINDING specifies that aliases are dereferenced when finding the
starting point for the search (but not when searching under that starting
entry).

• DEREF_SEARCHING specifies that aliases are dereferenced when searching
the entries beneath the starting point of the search (but not when finding
the starting entry).

• DEREF_ALWAYS specifies that aliases are always dereferenced.

The default value is DEREF_NEVER.
To have a search operation follow all aliases, you could set the corresponding

property in a search constraints object and pass the object as a parameter to the search:

cons.setDereference(LDAPConnection.DEREF_ALWAYS);

MaxResults

This setting determines the maximum number of results that should be returned from
the search. The server may also be configured to return not more than a certain num-
ber of entries. If the server is configured with a limit, then the actual limit for a partic-
ular operation will be the lesser of the client and the server limits. Again, the

Constraints for Searching 497

privileged Directory Manager user is not subject to these limits. If more entries satisfy
the request than the limit allows, an LDAPException will be thrown with a result code
of SIZE_LIMIT_EXCEEDED. Specifying 0 indicates that there should be no limit. The
default value for this setting is 1,000 entries.

BatchSize

This setting determines how many results should be delivered to the client at a time. A
value of 0 indicates that the client wishes to wait until all entries have been returned
before processing any results. When the client calls LDAPSearchResults.next or
LDAPSearchResults.nextElement, the call will block until all results are available. If
the value 1 is specified, the client can process each entry as soon as it is returned by the
server. The method next or nextElement will block only until one additional result is
available. Note that if you are doing client-side sorting, you will need to retrieve all
entries before sorting. The default value for this setting is 1.

MaxBackLog

This setting determines the size of the queue of search results, when BatchSize is
not 0. When the queue fills up, the client must process search results with next or
nextElement before the SDK continues to receive and buffer additional results.
MaxBackLog is discussed in detail in Chapter 16.

Conclusion

This chapter has discussed the various options for LDAP operations and how they can
be applied. These options allow the programmer to tune operations individually or to
configure a connection for all operations. Although the default options may be satis-
factory for many applications, choosing the right options may be critical for others.

498 Options and Constraints

We have covered all the basics for writing LDAP applications and applets. In the
sample applications, we’ve touched on a few advanced or less commonly used

features. In this chapter we will investigate some of the areas off the beaten track and
look at some of the coding choices that will affect the performance of your application.

LDAP URLs

In Chapter 11 we used an LDAPUrl object as a compact representation of an LDAP
query. Let’s take a closer look at the composition and use of an LDAP URL.

An IETF Standard

An LDAP URL, defined by RFC 2255, is represented by the LDAPUrl class and com-
posed of the following:

"ldap://" [hostName [":" portNumber]] "//" baseDN

["?" attributeList ["?" scope "?" filterString ["?" extensions]]]

where

• All text enclosed by quotation marks is literal.

• hostName and portNumber identify the location of the LDAP server.

• baseDN specifies the name of an entry within the given directory (the entry
represents the starting point of the search).

• attributeList contains a comma-delimited list of attributes to retrieve (if
not specified, fetch all attributes).

Odds and Ends

499

C H A P T E R 1 5

• scope is one of the following:

• “base”indicates that this is a search only for the specified entry.

• “one” indicates that this is a search for matching entries one level under
the specified entry (and not including the entry itself).

• “sub” indicates that this is a search for matching entries at all levels
under the specified entry (including the entry itself).

If not specified, the scope is base by default.

• filterString is a human-readable representation of the search filter,
of the same type as is used as the search filter parameter in the
LDAPConnection.search methods. This value is used only for
one-level or subtree searches.

• extensions is an optional list of comma-separated extensions to the infor-
mation provided by the other components. RFC 2255 defines one such
extension, bindname, for specifying a DN to authenticate as. This exten-
sion is not widely used, because a corresponding password cannot be pro-
vided with the URL (the RFC advises against passing a reusable password
for URL processing, for security reasons). Any other extensions must be
prefixed with “X-” or “x-”. An extension may have a value: for example,
bindname=uid=paul%2cou=people%2co=acme.com. Note that commas must
be URL-encoded in an extension value because they separate extensions.
Each extension may be prefixed with an exclamation point, in which case the
client (the SDK or the application) should consider the extension mandatory
and not execute the search if it cannot process the extension. For example,
ldap:///ou=people,o=acme.com??sub?(sn=jensen)?!X-QUICKSEARCH.

Note that if scope and filterString are not specified, an LDAP URL identifies
exactly one entry in the directory.

Encoding rules similar to those for other URLs (for example, HTTP) apply for
LDAP URLs. Specifically, any “illegal” characters are escaped with %HH, where HH rep-
resents the two hex digits that correspond to the ASCII value of the character. Charac-
ters that do not require encoding in LDAP URLs are the ASCII letters and numbers
and the following characters: $ - _ . + ! * ‘ (). Encoding is legal (and necessary) only on
the DN and filter portions of the URL.

The following are examples of LDAP URLs:

• ldap://localhost:389/o=Airius.com. This URL refers to the single
entry o=Airius.com and is used to return all of its attributes (except for
operational attributes).

500 Odds and Ends

• ldap://localhost:389/o=Airius.com?o. This is the same as the previous
example, except that only the o (organization) attribute is requested.

• ldap://localhost:389/o=Airius.com??one. This URL expresses a request
for all immediate children of o=Airius.com (but not o=Airius.com itself) and
to return all attributes of the entries found (except for operational attributes).

• ldap://localhost:389/ou=People,o=Airius.com?cn,mail?sub?cn=a*.
This URL expresses a request for all entries under and including ou=
People,o=Airius.com that have a common name starting with the letter
A, and to return only the common name and e-mail attributes of each entry
found.

Some Web browsers allow you to type in an LDAP URL instead of an HTTP
URL and will execute a search and display the results. You can try out the URLs
described so far with Netscape Navigator or Microsoft Internet Explorer.

Using LDAP URLs in Java

You can create and use an LDAPUrl object for a search as in the following example:

LDAPUrl url = new LDAPUrl(

"ldap://myhost.acme.com:389/ou=People,o=Airius.com?cn,mail?cn=adam*");

try {

LDAPSearchResults res = LDAPConnection.search(url);

// Process the results...

} catch (LDAPException e) {

}

You can also specify the components of the LDAP URL individually when con-
structing the LDAPUrl object:

String[] attrs = { "cn", "mail" };

LDAPUrl url = new LDAPUrl("myhost.acme.com", 389,

"ou=People,o=Airius.com",

attrs, LDAPConnection.SCOPE_SUB,

"cn=adam*");

One advantage to using the constructor that takes individual components is that
the baseDN and filterString fields are automatically encoded if necessary. For
example, o=Acme Parts = Us is encoded internally as o=Acme%20Parts%20%3D%20Us.

There are methods to extract the various components of the LDAP URL:

String[] getAttributeArray()

String getDN()

LDAP URLs 501

String getFilter()

String getHost()

int getPort()

int getScope()

String getUrl() - this returns a String that is encoded for use as an

LDAP URL

There are also utility methods to encode or decode any String for use as an
LDAP URL:

static String decode(String encodedString)

static String encode(String unencodedString)

Not Your Average URL

If you have done Internet programming in Java before, you may be familiar with the
java.net.URL and the java.net.URLConnection classes. With those standard classes
you can do things such as the following:

URL url = new URL("http://java.sun.com/index.html");

InputStream in = url.getURLConnection().getInputStream();

OutputStream in = url.getURLConnection().getOutputStream();

You can then write to and read from the streams. You can also let the standard
content handler classes read from the URL and instantiate an appropriate object if the
server supplies type information and there is a handler available for the content type:

Object o = url.getContent();

LDAP URLs are more limited. An LDAP URL can be used only to express
a search and not any kind of update, and it does not imply a connection that
can supply a stream to the application for reading or writing. Executing
LDAPConnection.search(LDAPUrl url) causes a connection to be established, used
for the single search operation, and then closed. LDAP URLs do not provide a means
to supply authentication credentials, so any search operation will be unauthenticated
(anonymous) when using the SDK.

Despite these limitations, you may find an LDAPUrl convenient for expressing a
search. If authentication is required, you can unpack the LDAPUrl components and use
your already authenticated LDAPConnection object to do a search:

// ld is an LDAPConnection that has been connected and authenticated

// earlier

502 Odds and Ends

// url is an LDAPUrl that was created earlier

try {

LDAPSearchResults res = ld.search(url.getDN(), url.getScope(),

url.getFilter(),

url.getAttributeArray(),

false);

while (res.hasMoreElements()) {

// Process the results...

}

} catch (LDAPException e) {

}

A Rose by Any Other Name . . .

Directory users in the United States may never have to reflect on the fact that string
data can be represented in many different character sets. Directory servers that com-
ply with LDAPv3 transmit all string data in the UTF8 character set, a variant of Uni-
code. UTF8 has the pleasant characteristic that the ASCII characters are represented
with the same 7-bit values (one character per byte) as in ASCII. That means that
ASCII text can easily be added to a directory, searched, and updated; the data is the
same in the UTF8 character set.

Things are trickier beyond the ASCII characters. Programmers and users in some
European countries may expect to be able to use characters from the latin-1 character
set—for example, å, ä, ö, é—and users in Japan might want to input data in shift-jis or
EUC. The good news is that UTF8 can accommodate all the characters anyone can
come up with for all these character sets; the bad news is that any data in those char-
acter sets must be converted to UTF8 before being stored in the server, and it must be
converted back when reading from the server.

Suppose you have an LDIF file with data you would like to add to a directory. If
the data was typed in with a German-language or Japanese-language word processor,
it will most likely contain characters that are not valid in UTF8. You can add the con-
tents of the file to the directory with java LDAPModify, but you will not be able to
search for values containing those characters; if you search for something else and
receive attribute values containing the characters, most likely the results will be trun-
cated. The solution is to run the LDIF file through a converter (to UTF8) before
adding it.

Clients of the C LDAP API are expected to convert their string data to UTF8 (if it
is not in ASCII) before passing it to any API function, and to convert it back when
receiving data from the server. Users of the Java LDAP API are much more fortunate.
Character sets are handled in the Java language, the Java class libraries, and Directory
SDK for Java as follows:

A Rose by Any Other Name . . . 503

• The Java language uses UCS2—a variant of Unicode that represents each
character as two bytes—internally for String and character data. Trans-
formations between UTF8 and UCS2 are easy.

• By default, the Java class libraries expect data that is typed in at the key-
board or read from a file to be in the local character set (for which the com-
puter is configured), so they convert the data on the fly to UCS2. When
string data is written or displayed, it is automatically converted to the local
character set first.

• The standard Java input and output stream reader and writer classes, as
well as the String class, have methods that take a character set specifica-
tion as a parameter. You can use these methods to convert the streams or
strings to or from an arbitrary character set, not just the default local char-
acter set. For example,

InputStreamReader reader = new InputStreamReader(is, "UTF8");

creates an input stream reader that will convert from UTF8 to UCS2 when
reading data. A program to read a file in the local character set and output
it in UTF8 may be as simple as the following:

import java.io.*;

public class ToUTF8 {

public static void main(String[] args) {

try {

InputStreamReader reader =

new InputStreamReader(

new FileInputStream(args[0]));

OutputStreamWriter writer =

new OutputStreamWriter(

new FileOutputStream(args[1]), "UTF8");

char[] buf = new char[1024];

int nRead;

while((nRead = reader.read(buf, 0, buf.length)) > 0) {

writer.write(buf, 0, nRead);

}

writer.close();

} catch (IOException e) {

System.err.println(e);

}

}

}

504 Odds and Ends

If the input data is not in the local character set, you can specify its
character set when creating the InputStreamReader. For example, if the
input file is in shift-jis, use the following:

InputStreamReader reader =

new InputStreamReader(

new FileInputStream(args[0]), "SJIS");

• The Java LDAP SDK converts between UTF8 and UCS2 automatically
when you create attributes or extract the values of an attribute as strings,
and when a message is sent off to the server or received from the server.
Most likely, your code will not need to concern itself with conversions
between UTF8 and UCS2 unless it is reading data from an external source
(as already discussed).

• One exception to this rule that we have run into is in making international-
ized Web-based applications work with older browsers (Internet Explorer
3 and Netscape Navigator 3). These older browsers do not handle UTF8
well at all. If your application must handle non-ASCII character sets and it
must work well with the older browsers, you will probably end up with
code that explicitly converts between character sets, perhaps based on the
Accept-Language header from the browser.

Another exception to the rule is for certain platforms, such as Japa-
nese Windows NT 4.0, that truncate or corrupt UTF8 data entered at the
command line. For example, if you want to specify a base DN for a search
as a command-line argument, Japanese Windows NT 4.0 will truncate or
corrupt the DN before it gets to your program if the DN contains charac-
ters that are not in the local character set.

When What You Read Is Not What You Wrote

One of the real strengths of LDAP and many servers that implement it is the ability to
replicate widely. Replication means that the directory contents, or parts of it, are
copied to another server. There are many reasons to replicate directories—for example:

• A large number of users may want to access the same directory data, caus-
ing a heavy load on a server. One or more replicas are created, and the
client programs of the users are configured to use one of the replicas rather
than having all of them direct their requests to a single server.

• A company may have operations in several countries or widely dispersed
geographical areas between which the network links are relatively slow.

When What You Read Is Not What You Wrote 505

The company creates a replica in each country, or perhaps a replica for sev-
eral adjacent countries. Users access the server that is geographically closest
and enjoy high bandwidth and little contention.

• A company may want to make some of its directory data available to part-
ners outside the company firewall. It creates a replica that is accessible to
the partners and configures the replication to copy only certain attributes
of each entry, or only certain entries, to the replica.

• A replica may be maintained as a “hot standby.” If the main server goes
down, clients can be redirected to use the replica instead.

When a change is made to data in one server, the change may be propagated
immediately to the other one, or the servers may be configured to propagate changes
at regular intervals—for example, once an hour. The servers may be configured to do
all the replication at night. Eventually, all the servers involved in replication will con-
tain identical data (if replication was configured to keep the entire contents in synch).
At any given moment, however, that may not be the case.

Why do we, as developers of client applications for directories, care? We should
never assume that all clients of all servers in a replicated environment have the same
view of the directory at all times. In particular, we cannot assume that a change made
by a program to data in one server will be visible to all users immediately. If replica-
tion is configured to happen only once a day, it may be many hours before the change
has propagated to all servers; in the meantime, other changes may have been intro-
duced that negate the original change.

One particularly common programming paradigm simply does not work in
many replicated scenarios: writing data to the server and then reading it back to verify
that it was successfully stored. Often, a replica is configured to be read-only. The vast
majority of LDAP operations are searches or reads, and the replica responds to the
search and read requests just as if it were an independent directory and not a copy. But
when it receives a write request, it returns a referral—pointing to the master (or
source) directory—instead of returning search results. Referrals are discussed in detail
in Chapter 16.

When the client receives the referral, it contacts the referred-to server and pre-
sents the write request there. That work may be done transparently by the SDK, such
that the user or application is not aware that she or it is talking to more than one
server. If the application then attempts to read from the server to verify the data, the
request will be fulfilled by the replica. But the replica has most likely not yet been noti-
fied of the change in the data of the master, so the client may draw the conclusion that
the write failed.

How can you keep your application functioning sanely when updates are being
referred to a server that is different from the one to which the program originally con-

506 Odds and Ends

nected? The first rule is to cache the changes in the client rather than reading an entry
immediately after writing it (if the write succeeded). If relying on a cached copy is not
possible (that is, if your application must immediately verify that a write succeeded by
reading the same data), then you will have to make sure that the application connects
to the master server and not to a read-only replica. You may even want to turn off
automatic referral following during updates and have the SDK throw an exception if
referrals are received instead, so that you can notify the user that the application needs
to be reconfigured to point to the master server.

Once the IETF has adopted standards for multimaster replication, there will be
an increasing number of LDAP servers configured so that more than one server may
contain writable copies of the same data. In a multimaster environment, changes may
be made to the same entry at the same time on different servers. Depending on how
the servers resolve the differences when they compare the changes (and perhaps on
whether or not the system clocks of the servers are perfectly synchronized), the change
made on one server may erase the change made on another server, or the end result
may be a combination of both changes. In either case, the client making a change to
directory data cannot assume that the change will appear the same to other users or
even to itself later—even if the client has sole access to one server.

In directory or database terms, this paradigm is called loose consistency. Eventu-
ally all servers will converge on a single view of the data, but at any given point in time
they may differ.

Sometimes One Thread Is Not Enough

Java makes it easy to do more than one thing at once with the Thread class. In many
traditional programming environments, you have to do tricks with asynchronous I/O
or with message queues to prevent an application from apparently freezing while
waiting for an operation to complete. With Java, you can create a thread to perform a
task involving lengthy computations or synchronous I/O. The user interface thread
continues to update the user interface elements so that screens can be repainted and
the application appears responsive to the user. There may be a list or table that is con-
tinuously updated as the results of a search become available.

The Java LDAP classes are all thread safe. You can launch several threads that
simultaneously execute search or update operations on a single LDAPConnection
object. Synchronization is at the method level or lower. A thread that is excecuting an
LDAP operation will typically block other threads only for as long as it takes to hand
off a message to the internal LDAPConnection thread (which manages the socket to
the server).

The following code creates a single connection and authenticates, and then
launches one thread to do a search and process the results, and another thread to

Sometimes One Thread Is Not Enough 507

change the common name of an entry. There is no risk that the operations will inter-
fere with each other.

public class TestMultiple {

LDAPConnection ld = new LDAPConnection(); // Shared among threads

TestMultiple(String[] args) {

if (args.length < 4) {

System.err.println("Usage: TestMultiple HOST PORT " +

"DN PASSWORD");

System.exit(1);

}

try {

// Connect and authenticate on behalf of all tasks

ld.connect(args[0], Integer.parseInt(args[1]));

ld.authenticate(args[2], args[3]);

} catch(LDAPException e) {

System.out.println("Error: " + e.toString());

System.exit(1);

}

// Create and start a task to process all person entries under

// "ou=People,o=Airius.com"

DoASearch search = new DoASearch("ou=People,o=Airius.com",

"objectclass=person");

Thread th1 = new Thread(search, "searchPeople");

th1.start();

// Create and start a task to change Babs's common name

ChangeName change =

new ChangeName("uid=bjensen,ou=People,o=Airius.com",

"Babs B. Jensen");

Thread th2 = new Thread(change, "changeBabs");

th2.start();

// At this point, both tasks are running in parallel.

// Wait for both to finish, and then exit.

try {

th1.join();

th2.join();

} catch (InterruptedException e) {

}

System.exit(0);

}

public static void main(String[] args) {

new TestMultiple();

}

508 Odds and Ends

// A command class - instantiate it in a thread to do a search

class DoASearch implements Runnable {

String base, filter;

DoASearch(String base, String filter) {

this.base = base;

this.filter = filter;

}

public void run() {

LDAPSearchResults res;

try {

// Use the LDAPConnection object of the outer class

res = ld.search(base,

ld.SCOPE_SUB,

filter,

null,

false);

} catch (LDAPException e) {

System.out.println("Error: " + e.toString());

return;

}

while (res.hasMoreElements()) {

try {

LDAPEntry entry = res.next(); // next directory entry

System.out.println(entry.getDN());

// Do something with the entry...

} catch (LDAPException ex) {

System.out.println("Error: " + ex.toString());

continue;

}

}

}

}

// A command class - instantiate it in a thread to change the

// common name of an entry

class ChangeName implements Runnable {

String dn, newName;

ChangeName(String dn, String newName) {

this.dn = dn;

this.newName = newName;

}

public void run() {

try {

// Use the LDAPConnection object of the outer class

Sometimes One Thread Is Not Enough 509

ld.modify(dn, new LDAPModification(

LDAPModification.REPLACE,

new LDAPAttribute("cn", newName)));

System.out.println("Changed name of " + dn + ": "

+ newName);

} catch (LDAPException e) {

System.out.println("Error: " + e.toString());

}

}

}

}

This is a simple example. Both operations use the connection object without
changing any options or setting any controls. In most real-life projects, the code will
not reside in a single file, as is the case here. More than one programmer may be work-
ing on classes that collaborate and share a single connection. It becomes difficult to
keep track of just how the connection is being used in various parts of the code.

Don’t Step on My Settings

When options or controls are applied to a connection, they affect all threads sharing
the object. Changing authentication also affects all threads because an LDAP connec-
tion has only one set of credentials at any given time. Consider the TestMultiple
code from the previous example, with the following change to DoASearch:

try {

// Use the LDAPConnection object of the outer class

ld.authenticate("uid=sadams,ou=People,o=Airius.com",

"password");

res = ld.search(base,

ld.SCOPE_SUB,

filter,

null,

false);

} catch (LDAPException e) { }

We now have a race condition. If the DoASearch thread does the authenticate
before the ChangeName thread does its modify, the latter will have unexpected creden-
tials and may fail. This is a bad situation. If DoASearch and ChangeName were defined in
separate files, a programmer working on DoASearch might decide that changing authen-
tication is a good thing to do when executing the ou=People search, and not even be
aware that another thread was doing something that required other credentials.

510 Odds and Ends

Similar considerations apply to connection options. One thread may want to
have referrals followed automatically, while for another thread it would be an error
condition for a referral to be encountered during an operation. For the latter thread,
rather than following the referral, an exception should be reported to the user and the
operation should be discontinued. If one thread does one of the following:

ld.setOption(ld.REFERRALS, true);

or

ld.getSearchConstraints().setReferrals(true);

then all threads sharing the connection will find that referrals are being followed auto-
matically.

Controls may also be specified as options. Some controls are valid only with cer-
tain operations. For example, a thread may specify an LDAPVirtualListControl for a
connection or for the search constraints of a connection prior to executing a search.
The LDAPVirtualListControl is not valid for any operations other than search, so
another thread (or the same thread executing another part of the code later) will
receive an exception when trying to do an add or modify if the control is still present
in the connection.

There is a workaround for connection options and constraints: you can get a
copy of the current constraints of the connection, modify the copy, and supply the
copied constraints to the LDAPConnection methods that take an LDAPConstraints or
LDAPSearchConstraints parameter. For example, do the following:

LDAPSearchConstraints cons = ld.getSearchConstraints();

cons.setReferrals(true);

ld.modify(dn, mod, cons);

instead of

LDAPcons = ld.getSearchConstraints ();

cons.setReferrals(true);

ld.setSearchConstraints (cons);

or

ld.setOption(ld.REFERRALS, true);

ld.modify(dn, mod);

Copying constraints is an inexpensive operation, unless the constraints contain
controls with a very large amount of data. None of the controls defined in the SDK
involve large quantities of data.

Sometimes One Thread Is Not Enough 511

A Cloned Connection Is a Safe Connection

Creating a copy of the connection constraints to modify for each operation (if partic-
ular options are desired for the operation) is a good thing, because then you don’t
have to worry about what other parts of the code might be doing with the options.

However, we still have the problem with authentication. The LDAP protocol
defines authentication as an operation, not an option to an operation. Authenticating
changes the state of the connection, and the credentials presented remain in effect for
all subsequent operations until there is a new authentication. Chapter 16 discusses a
special control that can be used to bypass this restriction in some cases, but for now
we will present a general-purpose way to share connections without risk of affecting
other threads or other code segments: cloned connections.

When you call LDAPConnection.clone, you receive an object that shares a phys-
ical connection with an LDAP server (if a connection has been established at that
point) but has its own state. Any changes you make to the options or constraints of
the original object or of any clone will affect only that individual object.

In the following example, for instance, conn1 will continue to follow referrals
automatically, and conn2 won’t.

LDAPConnection conn1 = new LDAPConnection();

conn1.getSearchConstraints().setReferrals(true);

LDAPConnection conn2 = (LDAPConnection)conn1.clone();

conn2 setOption(conn2.REFERRALS, false);

//... somewhere in one thread

res1 = conn1.search(...);

//... somewhere in another thread

res2 = conn2.search();

You could have used conn1 for both search operations and protected the opera-
tions from affecting each other by copying the constraints and passing the modified
constraints to each search operation as described earlier. But cloning the connection
provides complete insulation and a safety net for client programming.

Cloning the connection also provides a unique benefit when an application must
use more than one set of credentials while running: if any object sharing a physical
connection calls authenticate, that object is transparently dissociated from the oth-
ers and acquires its own physical connection. Consider the following:

LDAPConnection conn1 = new LDAPConnection();

try {

conn1.connect("localhost", 389);

conn1.authenticate("uid=sadams,ou=People,o=Airius.com");

} catch (LDAPException e) {

512 Odds and Ends

}

LDAPConnection conn2 = (LDAPConnection)conn1.clone();

At this point, conn2 is sharing a physical connection with conn1, and therefore
necessarily sharing credentials.

try {

conn2.authenticate("uid=bjensen,ou=People,o=Airius.com");

} catch (LDAPException e) {

}

Now conn2 has its own physical connection to the same server as conn1, but
with different credentials.

LDAPConnection conn3 = (LDAPConnection)conn1.clone();

try {

conn1.authenticate("uid=bsimpson,ou=People,o=Airius.com");

} catch (LDAPException e) {

}

Initially conn3 shared a physical connection with conn1. But then conn1 dissoci-
ated itself from the physical connection by authenticating. Now there are three physi-
cal connections, with three unique sets of credentials.

If we know that the application will constantly be reauthenticating with different
credentials, obviously we haven’t gained anything by cloning the connection and we
should do something different—for example, create a pool of connections to share. But
many applications maintain a connection for a long time and change credentials infre-
quently. For example, most of the time the application may be doing searches anony-
mously or as a single user, but sometimes the directory is to be updated and special
credentials must be used to authenticate first. That part of the code can have its own
clone of the shared connection and freely change authentication whenever necessary
without worrying about disconnecting, reconnecting, or affecting other parts of the code.

When a clone calls disconnect, it is dissociated from the physical connection. If
it is the last object using the physical connection, the physical connection is shut down.

This is the lowdown on connection cloning:

• If the connection to be cloned is not yet connected, the clone won’t be
either (of course). If the clone connects, the original object will not be
affected (that is, it will remain disconnected).

• A clone continues to share a physical connection with its source connection
object until it calls disconnect or authenticate. If it calls authenticate,

Sometimes One Thread Is Not Enough 513

the object is dissociated from the others and acquires its own physical con-
nection. If it calls disconnect, the other connection objects remain con-
nected; if there are no other objects sharing the physical connection, the
physical connection is terminated.

• All objects sharing a physical connection are symmetrical. It doesn’t matter
which one disconnects or reauthenticates first.

• All connection options, including referral settings, limits, and controls, are
private to each object. Initially, a clone has options identical to those of the
original object.

Cloning a connection is a very lightweight operation. Don’t hesitate to use it!

Performance, and How to Get It

Most applications have performance concerns. Some do very infrequent LDAP opera-
tions. In those cases, it may be that nothing you can do in the code that calls the Java
LDAP SDK will have any noticeable effect on the overall speed of the application. At
the other end of the spectrum are many server-side programs, such as Web-based
applications that use LDAP to authenticate every visitor to a Web site, or to retrieve
the preferences of each visitor. Even modest speed increases in LDAP operations may
have a big impact on the bandwidth that the site can handle.

Besides speed, memory usage is a concern in most sizable Java programs. In the
following discussion we will present ways to minimize memory requirements and
maximize speed when using the SDK.

Breaking Up Is Hard to Do: Avoid Unnecessary Connections

Establishing a connection to an LDAP server can be slower than a search or an
authentication operation by an order of magnitude or more (if only a limited number
of results are returned on the search). If possible, try to keep the connection alive and
reuse it, rather than disconnecting and reconnecting on every search. Even if each
search is done with different credentials (that is, it is preceded by an authentication
operation), there is generally a substantial gain to avoiding a new connect. Besides
time spent on the wire and in the server, a connect involves a DNS lookup (unless an
IP address was specified instead of a host name).

Pool the Connections

If you expect to be changing credentials often, or supporting many threads doing oper-
ations with unique credentials, you may benefit from creating a pool of connections.

514 Odds and Ends

If you have a finite and reasonably small number of credentials that are to be
used in different operations, you can preallocate a connection object for each identity
(DN) and keep a reference to each object in a Hashtable, using the identity as the key.
When the application needs a connection with a particular identity, the corresponding
object can be retrieved from the Hashtable. If its isAuthenticated method returns
false, the object can be authenticated at that time.

Hashtable ht = null;

String HOST = "myhost.acme.com";

int PORT = 4040;

String[] identities = { "uid=bjensen,ou=People,o=Airius.com",

"uid=sadams,ou=People,o=Airius.com",

"uid=jfoster,ou=People,o=Airius.com" };

protected void initializePool() throws LDAPException {

ht = new Hashtable();

for(int i = 0; i < identities.length; i++) {

LDAPConnection ld = new LDAPConnection();

ld.connect(HOST, PORT);

ht.put(identities[i], ld);

}

}

protected LDAPConnection getConnection(String dn, String password)

throws LDAPException {

// We need a connection with the right credentials

LDAPConnection ld = (LDAPConnection)ht.get(dn);

if ((ld != null) && !ld.isAuthenticated()) {

ld.authenticate(dn, password);

}

return ld;

}

The preceding example assumes that the identity can be only one of the pre-
defined DNs. If it is not a given that all identities will be used while the application is
running, it may be better to postpone connecting the objects until inside getConnection,
to avoid unnecessary work and resource usage.

You might use the pool in this way:

final static String[] ATTRS = { "mail" };

protected String getEmailAddress(String dn, String password)

throws LDAPException {

// Error checking skipped for now. We might get a null connection

// if this is an unexpected DN, or the entry might not exist.

Performance, and How to Get It 515

LDAPConnection ld = getConnection(dn, password);

LDAPEntry entry = ld.read(dn, ATTRS);

return (String)entry.getAttribute().

getStringValues().nextElement();

}

If the number of identities to be used for authenticating is large, or if the iden-
tities are not known in advance, you can create a queue of connection objects in-
stead, and have each thread wait for an object to be available. In this case, no
assumptions should be made about the credentials of the connection. You can call
getAuthenticationDN on the object to find out if reauthentication is required for the
operation or if the previous operation left the object with the appropriate credentials.

Fewer But Better Searches

Chapter 5 introduced a few rules of thumb for increasing performance and reducing
memory consumption while searching. To reiterate the two most important rules:

• Use indexed attributes

• Retrieve only attributes you need

Another useful technique is to combine searches, where possible, so that one
operation can replace several. For example, if the application needs to know both the
structure of an organization and the title of each manager, it may be possible to retrieve
both sets of information with one search and parse the results in the client. The search
filter might look like this, if only managers are assigned titles in this subtree:

(|(objectclass=organizationalUnit)(title=*))

To Cache or Not to Cache

The SDK includes a cache mechanism, which is not used by default. It is a search-level
cache, not an entry-level cache. Results will be retrieved from the cache rather than
from the LDAP server if and only if all of the following apply:

• The cache is enabled.

• The host and port of the connection match a cache entry.

• The credentials of the connection match those of the cache entry.

• Any controls in the request match those of the cache entry.

516 Odds and Ends

• The scope and search filter match those of the cache entry.

• The requested attribute list matches that of the cache entry.

Some applications do repeated identical searches, and using this cache will sig-
nificantly improve their performance. We have benchmarked a 17-fold speed increase
when the server is on the same machine as the client, or when the two are connected
on a LAN. If the connection is slower—for example, if it is a modem connection—the
relative gain will be even greater.

However, maintaining a cache incurs runtime overhead in performance and
memory. If your application does a large number of unique searches or does searches
with varying credentials, you will pay the price for this overhead but not see much
benefit. In this case you are better off keeping a simple entry-level cache as a
Hashtable in the application, or not using a cache at all. The same is true if you will
be doing many different searches that each return a very large number of entries,
because a large result set may fill the cache and force previous results to be expunged.

A cache is shared by all objects that share the same physical connection—that
is, by all connection clones. The cache can also be used by multiple independent
LDAPConnection objects, but there is no benefit if the objects are connected to different
servers.

To enable the search-level cache, construct an LDAPCache object and apply it to
the connection:

LDAPCache cache = new LDAPCache(3600, 1000000);

ld.setCache(cache);

The first parameter—TTL (time to live)—specifies the number of seconds before a
cache entry expires; the second parameter—maxSize—specifies the maximum size in
bytes of all cache entries together. An entry is purged from the cache if it is older than the
TTL or if adding a new entry would cause the total cache size to be greater than maxSize.

The SDK does not maintain consistency between the cache and the directory. In
other words, if an operation changes the directory contents after a search has com-
pleted, the cached search results may no longer be valid. If the same application is
doing both the cached searching and the directory updates, then the application can
flush the corresponding cache entries after updating the directory:

ld.getCache().flush("ou=People,o=Airius.com", ld.SCOPE_ONE);

or

ld.getCache().flush("uid=bjensen,ou=People,o=Airius.com",

ld.SCOPE_BASE);

Performance, and How to Get It 517

The first parameter is the base DN for the purge. If it is null, the whole cache is
purged. The second parameter indicates whether only the specified DN is to be
purged, only the children of the DN, or the DN along with all descendants.

In Chapter 16 we will present the persistent search control. It allows a thread to
register its interest in any changes to an area of the directory you specify. When there
are changes, the thread receives a search result and can flush the cache entries using
the DN of the result.

Conclusion

This chapter has discussed the LDAPUrl class for representing an anonymous search,
issues with storing non-ASCII string data, how to share a single connection among
multiple threads, when and how to use the search-level cache class, and a few tech-
niques to squeeze more performance out of your LDAP-enabled application. Chapter
16 will explore a few of the more advanced features of the SDK.

518 Odds and Ends

In this chapter we will explore some of the less followed paths through the SDK,
including managing the schema, using Virtual List Views, and handling password

expiration. We’ll take a look at the built-in controls of the SDK for accessing LDAP
server functionality beyond what is defined by the protocol standards, how to write
your own control, how to manage referrals, how to access extended operations, and
how to use the asynchronous interface.

Information about Information: Managing the Schema

We ran into the schema earlier in this book. Chapter 2 introduced a few of the most
commonly used object classes and attributes. We addressed the constraints imposed
by the schema in Chapter 11, when we wanted to add values for various user prefer-
ences to the user’s directory entry. If schema enforcement is enabled in a server, you
can add values only for attributes that are defined as mandatory or optional for the
object classes of the entry.

Programmatic Access through the Schema Classes

In Chapter 2 we looked at the notation used by Netscape and many others for schema
configuration files (not a standard, but a commonly used format). The configuration
files define the schema of the server when it starts up. In this chapter we will see how
the schema can be discovered, read, and updated dynamically.

Version 3 of the LDAP protocol specifies that the schema can be read and
updated using the same operations you would use to read and update any data in the
directory. The steps are as follows:

Advanced Topics

519

C H A P T E R 1 6

1. Read the subSchemaSubEntry attribute from any entry in the directory.

2. Use the value of the subSchemaSubEntry attribute as the DN of an entry
from which to access the schema; specify objectclass=subSchema as the
filter.

3. Read or update the attributes of the entry to access or modify the schema.

For example:

java LDAPSearch -b "" -s base "objectclass=*" subSchemaSubentry

dn:

subSchemaSubentry: cn=schema

java LDAPSearch -b "cn=schema" -s base "objectclass=subSchema"

dn: cn=schema

objectclass: top

objectclass: subschema

cn: schema

objectclasses: (2.5.6.0 NAME 'top' DESC 'Standard ObjectClass'

MUST (object class) MAY (aci))

objectclasses: (2.5.6.1 NAME 'alias' DESC 'Standard ObjectClass' SUP

'top' MUST (objectclass $ aliasedobjectname) MAY (aci))

...

attributetypes: (2.16.840.1.113730.3.1.95 NAME 'accountUnlockTime'

DESC 'Standard Attribute' SYNTAX '1.3.6.1.4.1.1466.115.121.1.15')

attributetypes: (2.16.840.1.113730.3.1.74 NAME 'administratorContactInfo'

DESC 'Standard Attribute' SYNTAX '1.3.6.1.4.1.1466.115.121.1.15')

...

matchingrules: (2.16.840.1.113730.3.3.2.0.1 NAME

'caseIgnoreOrderingMatch-default' DESC '' SYNTAX

'1.3.6.1.4.1.1466.115.121.1.15')

matchingrules: (2.16.840.1.113730.3.3.2.0.1.6 NAME

'caseIgnoreSubstringMatch

-default' DESC '' SYNTAX '1.3.6.1.4.1.1466.115.121.1.15')

The format of the schema declarations is defined in RFC 2252, and it conforms
to the format used by X.500. Each object class is defined in a value of the attribute
objectClasses. Each attribute is defined in a value of the attribute attributeTypes.
Each matching rule is defined in a value of the attribute matchingRules. There may
also be an attribute matchingRuleUse, in which each value lists the attributes for
which one particular matching rule may be used. A matching rule that is supported by
a particular server may be specified as part of a search filter.

520 Advanced Topics

Each definition starts with the OID of the schema element and its name. The
name and the OID of a schema element can generally be used interchangeably in the
LDAP protocol and in the SDK.

Object class definitions declare the object class from which they derive (“SUP”)
and list the attributes that are required (“MUST”) and the attributes that are allowed
(“MAY”) in entries containing the object class.

Attribute definitions declare the syntax that is used to compare and sort them;
matching-rule definitions declare the syntax of attributes for which they may be used.
The OID for caseIgnoreString syntax is 1.3.6.1.4.1.1466.115.121.1.15, which
RFC 2252 also specifies as the OID for Directory String syntax, meaning that it
must be in UTF8 format. Attribute definitions also include the qualifier “SINGLE-
VALUE” if the attribute is allowed to have only one value.

With the Java LDAP SDK, you can use LDAPSchemaElement.cis as a constant to
indicate case-insensitive string syntax rather than specifying the OID. Other syntax con-
stants are LDAPSchemaElement.ces (case-exact string), LDAPSchemaElement.dn (com-
pare as a DN), LDAPSchemaElement.telephone (normalize and compare as telephone
numbers), LDAPSchemaElement.integer, and LDAPSchemaElement.binary.

Some additional schema element qualifiers are defined in RFC 2252 but not
widely supported in LDAP servers: “OBSOLETE,” “COLLECTIVE,” “NO-USER-
MODIFICATION,” “USAGE,” “EQUALITY,” “ORDERING,” and “SUBSTRING.”
The last three are used to specify special matching rules to use for equality comparisons,
sorting, and substring evaluation. “USAGE” may have any of the following values: “user-
Applications,” “directoryOperation,” “distributedOperation,” or “dSAOperation.”

In the example given earlier, we read the schema for the root DSE (the special
entry with the empty DN). In Netscape Directory Server and many other LDAP
servers, you will get the same results for any entry for which you read the schema
because the schema is global to the whole server. However, LDAP allows the schema
to be defined for a particular subtree. In the future it may become common for direc-
tories to support different schema definitions for different subtrees.

Although you are free to read and change these values with
LDAPConnection.search and LDAPConnection.modify, the Java LDAP API
provides classes that parse and construct the declarations, making it easy to interpret
and update the schema. To obtain the schema of a directory, follow these steps:

1. Instantiate an LDAPSchema object.

2. Execute its fetch method, supplying an LDAPConnection object.

3. Enumerate or extract object class, attribute, and matching-rule definition
objects.

For example:

Information about Information: Managing the Schema 521

// Construct a new LDAPSchema object to get the schema.

// ld is an LDAPConnection that is connected and authenticated.

LDAPSchema dirSchema = new LDAPSchema();

try {

// Get the schema from the directory

dirSchema.fetchSchema(ld);

} catch (Exception e) {

System.err.println(e.toString());

System.exit(1);

}

// Get and print the inetOrgPerson object class description

LDAPObjectClassSchema objClass = dirSchema.getObjectClass(

"inetOrgPerson");

if (objClass != null) {

System.out.println("inetOrgPerson := " + objClass.toString());

}

// Get and print the definition of the userPassword attribute

LDAPAttributeSchema attrType = dirSchema.getAttribute(

"userPassword");

if (attrType != null) {

System.out.println("userPassword := " + attrType.toString());

}

// Get and print the definitions of all matching rules

Enumeration en = dirSchema.getMatchingRules();

while(en.hasMoreElements()) {

LDAPMatchingRuleSchema matchRule =

(LDAPMatchingRuleSchema)en.nextElement();

System.out.println("matchingRule := " + matchRule.toString());

}

We used LDAPSchema.fetchSchema(LDAPConnection ld) in this example to
retrieve the schema associated with the root DSE of the server. There is an overloaded
method, LDAPSchema.fetchSchema(LDAPConnection ld, String dn), to retrieve the
schema associated with an arbitrary entry. As previously mentioned, Netscape Direc-
tory Server and most other LDAP servers will return the same results for any valid DN,
but a server could return a different schema for each different part of the directory tree.

Once the schema has been obtained from the directory by the LDAPSchema object,
you can extract individual schema elements by name, or obtain Enumerations for all
schema elements. In the preceding example we used LDAPSchema.getObjectClass
(“inetOrgPerson”) to extract a single object class definition. We could have used
LDAPSchema.getObjectClasses if we wanted to list or browse all object class definitions.

522 Advanced Topics

The LDAPObjectClassSchema, LDAPAttributeSchema, and
LDAPMatchingRuleSchema classes all derive from LDAPSchemaElement, which
defines many of the common members and methods.

You can add, modify, or remove a schema definition using the methods by the
same names on a particular schema element object. The following example adds the
new object class “Experiment.” It then changes the definition of “hairColor” and
deletes “Experiment.” The OIDs in the example are fictitious; for production, your
OIDs should be based on one obtained from the IANA (Internet Assigned Numbers
Authority), to guarantee uniqueness.

// Construct a new LDAPSchema object to get the schema.

// ld is an LDAPConnection that is connected and

// authenticated.

// Add a new object class.

String[] requiredAttrs = {"cn", "mail"};

String[] optionalAttrs = {"sn", "phoneNumber"};

LDAPObjectClassSchema newObjClass = new LDAPObjectClassSchema(

"newInetOrgPerson", "1.2.3.4.5.6.7", "top",

"Experiment", requiredAttrs, optionalAttrs);

// Add the new object class to the schema

newObjClass.add(ld);

// Create a new attribute type "hairColor"

LDAPAttributeSchema newAttrType = new LDAPAttributeSchema(

"hairColor", "1.2.3.4.5.4.3.2.1",

"Blonde, red, etc",

LDAPAttributeSchema.cis, false);

// Add the new attribute type to the schema

newAttrType.add(ld);

// Create a modified attribute definition for "hairColor"

LDAPAttributeSchema modAttrType = new LDAPAttributeSchema(

"hairColor", "1.2.3.4.5.4.3.2.1",

"Blue, green, etc",

LDAPAttributeSchema.cis, false);

// Modify the existing attribute type in the schema. This

// removes the previous definition and adds the new one in

// one atomic operation.

newAttrType.modify(ld, modAttrType);

// Remove the "Experiment" object class from the schema

newObjClass.remove(ld);

As with LDAPSchema.fetchSchema, each of the LDAPSchemaElement methods—
add, modify, and remove—has an overloaded method that takes a DN as an

Information about Information: Managing the Schema 523

additional parameter, for any LDAP server that supports a subtree-specific schema.
With most servers you can specify any valid DN, but the operations always affect the
global schema for the whole server.

A Pretty Printer for Schema Contents

The schema element classes have accessors for the commonly used (mandatory)
qualifiers:

public String LDAPSchemaElement.getDescription

public String LDAPSchemaElement.getName

public String LDAPSchemaElement.getOID

public String LDAPSchemaElement.getValue, which returns a String that

is formatted for adding to an LDAP server (compliant with RFC 2252)

public String LDAPAttributeSchema.getSyntax

public boolean LDAPAttributeSchema.isSingleValued

public Enumeration LDAPObjectClassSchema.getOptionalAttributes

public Enumeration LDAPObjectClassSchema.getRequiredAttributes

public String LDAPObjectClassSchema.getSuperior

LDAPSchemaElement also has methods to access any additional qualifiers beyond
those commonly used, and constants for the qualifiers defined in RFC 2252. Many
LDAP servers will ignore the additional qualifiers if you attempt to use them when
adding an attribute definition.

public void LDAPSchemaElement.setQualifier(String name, String value)

public String []LDAPSchemaElement.getQualifier(String name)

public Enumeration LDAPSchemaElement.getQualifierNames()

public static final String EQUALITY

public static final String ORDERING

public static final String SUBSTR

public static final String COLLECTIVE

public static final String NO_USER_MODIFICATION

public static final String USAGE

The next program retrieves the schema from a directory and prints out the defi-
nitions in a clear and readable format. Object classes are sorted by inheritance and
printed in a format similar to that used in the schema configuration files of many
LDAP servers, but sorted and then ordered and indented to indicate inheritance. Then
all attribute and matching-rule definitions are printed. You can optionally specify any
number of individual schema elements to print; if you do, the program exits after
printing them.

524 Advanced Topics

The program begins by parsing the command-line arguments for the required
host name and port number and for any options specifying particular schema ele-
ments to print:

/**

* Fetch the schema from the LDAP server at the specified

* host and port, and print out the schema (including descriptions

* of its object classes, attribute types, and matching rules).

* The schema is printed in an easily readable format (not the

* same as the format expected by an LDAP server). For example,

* you can enter the following command to print the schema:

* <PRE>

* java netscape.ldap.LDAPSchema myhost.mydomain.com 389

* </PRE>

* Options are:

* -D AUTHDN Use this DN to authenticate

* -w AUTHPASSWORD Use this password to authenticate

* -o OBJECTCLASS Print the definition of an object class

* -a ATTRIBUTE Print the definition of an attribute

* -m MATCHINGRULE Print the definition of a matching rule

*

* The default is to print all schema elements.

*

* @param args the host name and the port number of the LDAP server

* (e.g., netscape.ldap.LDAPSchema directory.netscape.com 389)

*/

public static void main(String[] args) {

String host = null;

int port = -1;

String authDN = null;

String authPassword = null;

Vector attrList = new Vector();

Vector ocList = new Vector();

Vector matchList = new Vector();

for(int i = 0; i < args.length; i++) {

if (args[i].startsWith("-")) {

if (i > (args.length - 2)) {

doUsage();

System.exit(1);

}

if (args[i].equals("-a")) {

i++;

attrList.addElement(args[i]);

Information about Information: Managing the Schema 525

} else if (args[i].equals("-o")) {

i++;

ocList.addElement(args[i]);

} else if (args[i].equals("-m")) {

i++;

matchList.addElement(args[i]);

} else if (args[i].equals("-D")) {

i++;

authDN = args[i];

} else if (args[i].equals("-w")) {

i++;

authPassword = args[i];

} else {

doUsage();

System.exit(1);

}

} else if (host == null) {

host = args[i];

} else if (port == -1) {

port = Integer.parseInt(args[i]);

} else {

doUsage();

System.exit(1);

}

}

if ((host == null) || (port <= 0)) {

doUsage();

System.exit(1);

}

Then the schema is retrieved from the directory:

LDAPConnection ld = new LDAPConnection();

try {

// Connect and get schema

ld.connect(host, port);

if ((authDN != null) && (authPassword != null)) {

ld.authenticate(authDN, authPassword);

}

LDAPSchema schema = new LDAPSchema();

schema.fetchSchema(ld);

ld.disconnect();

If any schema elements are requested on the command line, print them and exit:

526 Advanced Topics

// Print any specific schema elements that were requested

Enumeration en = ocList.elements();

while(en.hasMoreElements()) {

String name = (String)en.nextElement();

System.out.println("");

printOC(schema, name, 0);

}

en = attrList.elements();

while(en.hasMoreElements()) {

String name = (String)en.nextElement();

LDAPAttributeSchema attr =

schema.getAttribute(name);

if (attr == null) {

break;

}

System.out.println("");

printAttribute(attr);

}

en = matchList.elements();

while(en.hasMoreElements()) {

String name = (String)en.nextElement();

LDAPMatchingRuleSchema match =

schema.getMatchingRule(name);

if (match == null) {

break;

}

System.out.println("");

printMatchingRule(match);

}

// If specific elements were requested, we're done

if ((attrList.size() > 0) ||

(ocList.size() > 0) ||

(matchList.size() > 0)) {

System.exit(0);

}

If no schema elements are requested on the command line, sort the object classes
by inheritance and print them out followed by the attributes and matching rules:

// Sort the object classes by inheritance, and print them

// as tree

Hashtable tree = sortObjectClasses(schema);

printOC(schema, "top", 0);

printTree(schema, tree, 1);

Information about Information: Managing the Schema 527

// Sort the attributes and print them

en = schema.getAttributes();

LDAPSchemaElement[] elements = sortElements(en);

for(int i = 0; i < elements.length; i++) {

System.out.println("");

printAttribute((LDAPAttributeSchema)elements[i]);

}

// Sort the matching rules and print them

en = schema.getMatchingRules();

elements = sortElements(en);

for(int i = 0; i < elements.length; i++) {

System.out.println("");

printMatchingRule((LDAPMatchingRuleSchema)elements[i]);

}

System.exit(0);

} catch (LDAPException e) {

System.err.println(e);

}

}

The printmethod for object classes uses the accessors of LDAPObjectClassSchema:

/**

* Print the qualifiers of an object class definition, in a format

* similar to what is used in slapd.oc.conf

*

* @param schema a complete collection of schema definitions

* @param ocName name of the object class to print

* @param level indentation level

*/

private static void printOC(LDAPSchema schema,

String ocName,

int level) {

LDAPObjectClassSchema oc = schema.getObjectClass(ocName);

if (oc == null) {

return;

}

String tabs = "";

for(int i = 0; i < level; i++) {

528 Advanced Topics

tabs += '\t';

}

System.out.println('\n' + tabs + ocName);

System.out.println(tabs + '\t' + "OID");

System.out.println(tabs + "\t\t" + oc.getOID());

System.out.println(tabs + '\t' + "Superior");

System.out.println(tabs + "\t\t" + oc.getSuperior());

System.out.println(tabs + '\t' + "Description");

System.out.println(tabs + "\t\t" + oc.getDescription());

System.out.println(tabs + '\t' + "Required");

Enumeration vals = oc.getRequiredAttributes();

while(vals.hasMoreElements()) {

String s = (String)vals.nextElement();

System.out.println(tabs + "\t\t" + s);

}

System.out.println(tabs + '\t' + "Optional");

vals = oc.getOptionalAttributes();

while(vals.hasMoreElements()) {

String s = (String)vals.nextElement();

System.out.println(tabs + "\t\t" + s);

}

}

The attribute printer is similar but prints a user-friendly version of the syntax
specifier instead of the dotted decimal OID:

/**

* Print the qualifiers of an attribute definition, in a format

* similar to what is used in slapd.at.conf

*

* @param attr the attribute schema object

*/

private static void printAttribute(LDAPAttributeSchema attr) {

System.out.println(attr.getName());

System.out.println('\t' + "OID");

System.out.println("\t\t" + attr.getOID());

System.out.println('\t' + "Description");

System.out.println("\t\t" + attr.getDescription());

System.out.println('\t' + "Syntax");

System.out.println("\t\t" + getSyntax(attr));

if (attr.isSingleValued()) {

System.out.println('\t' + "single-valued");

} else {

Information about Information: Managing the Schema 529

System.out.println('\t' + "multi-valued");

}

Enumeration en = attr.getQualifierNames();

while(en.hasMoreElements()) {

String qualifier = (String)en.nextElement();

String value = attr.getQualifier(qualifier);

System.out.println('\t' + qualifier);

}

}

/**

* Get a string representation of an attribute syntax

*

* @param attr an attribute schema definition

* @return a user-friendly String describing the syntax

*/

private static String getSyntax(LDAPAttributeSchema attr) {

int syntax = attr.getSyntax();

if (syntax == attr.cis) {

return "case-insensitive string";

} else if (syntax == attr.binary) {

return "binary";

} else if (syntax == attr.integer) {

return "integer";

} else if (syntax == attr.ces) {

return "case-exact string";

} else if (syntax == attr.telephone) {

return "telephone";

} else if (syntax == attr.dn) {

return "distinguished name";

} else {

return attr.getSyntaxString();

}

}

Matching rules have a simpler structure:

/**

* Print the qualifiers of a matching-rule definition,

* in a format similar to what is used in slapd.at.conf

*

* @param match the matching-rule schema object

*/

530 Advanced Topics

private static void printMatchingRule(

LDAPMatchingRuleSchema match) {

System.out.println(match.getName());

System.out.println('\t' + "OID");

System.out.println("\t\t" + match.getOID());

System.out.println('\t' + "Description");

System.out.println("\t\t" + match.getDescription());

System.out.println('\t' + "Attributes");

String[] attrs = match.getAttributes();

if(attrs != null) {

for(int i = 0; i < attrs.length; i++) {

System.out.println("\t\t" + attrs[i]);

}

}

}

If all schema definitions are to be printed, the object class definitions must first
be sorted by superior:

/**

* Create a Hashtable for all object classes with a

* common superior, and a Hashtable containing all these Hashtables

*

* @param schema a complete set of all schema definitions

*

* @return a Hashtable containing other Hashtables with

* schema definitions

*/

private static Hashtable sortObjectClasses(

LDAPSchema schema) {

Hashtable htOC = new Hashtable();

Enumeration en = schema.getObjectClasses();

while(en.hasMoreElements()) {

// Sort the object classes by parent

LDAPObjectClassSchema oc =

(LDAPObjectClassSchema)en.nextElement();

String sup = oc.getSuperior();

Hashtable table =

(Hashtable)htOC.get(sup.toLowerCase());

if(table == null) {

table = new Hashtable();

}

table.put(oc.getName().toLowerCase(), oc);

Information about Information: Managing the Schema 531

htOC.put(sup.toLowerCase(), table);

}

Hashtable tree = new Hashtable();

// Recursively add children, starting at "top"

addChildren(htOC, tree, "top");

return tree;

}

/**

* Find and add object classes that directly inherit

* from sup to level

*

* @param htOC a table containing all object class

* definitions

* @level Table to which to add the children

* @sup Name of superior of children to add

*/

private static void addChildren(Hashtable htOC,

Hashtable level,

String sup) {

Hashtable ht =

(Hashtable)htOC.get(sup.toLowerCase());

Enumeration en = ht.keys();

while(en.hasMoreElements()) {

String name = (String)en.nextElement();

Hashtable table =

(Hashtable)htOC.get(name.toLowerCase());

if (table != null) {

level.put(name.toLowerCase(), table);

addChildren(htOC, table, name);

} else {

level.put(name,

ht.get(name.toLowerCase()));

}

}

}

The output of the program might look like this:

java PrintSchema localhost 389

top

OID

532 Advanced Topics

2.5.6.0

Superior

Description

Standard ObjectClass

Required

objectclass

Optional

aci

account

OID

0.9.2342.19200300.100.4.5

Superior

top

Description

Standard ObjectClass

Required

objectclass

uid

Optional

aci

description

host

l

o

ou

seealso

...

accountUnlockTime

OID

2.16.840.1.113730.3.1.95

Description

Standard Attribute

Syntax

case-insensitive string

multi-valued

...

caseExactOrderingMatch-en

OID

2.16.840.1.113730.3.3.2.11.3

Description

en

Attributes

Information about Information: Managing the Schema 533

Microsoft’s Active Directory requires authentication to read the schema, so in
the following example we provide an administrative DN and password.

java PrintSchema -D

"CN=Administrator,CN=Users,DC=myhost,DC=airius,DC=com"

-w admin -o groupOfNames myhost.airius.com 389

groupOfNames

OID

2.5.6.9

Superior

top

Description

Required

cn

member

Optional

o

ou

businessCategory

owner

seeAlso

Controls: An Essential Extension

One of the innovations of version 3 of the LDAP protocol is the concept of controls
that modify or extend the functionality of the standard protocol operations. The
intent is to allow LDAP to be extended and meet the needs of developers and con-
sumers without requiring another major revision of the protocol. A control is an arbi-
trary (that is, it needs to make sense only to the particular client and server) piece of
data supplied by the client or the server along with any other data that is part of a
standard protocol operation, such as search or delete.

Client controls are intended for local use by the SDK; they are not to be sent to
the server. Server request controls are to be sent to the server, and server response con-
trols may be sent by the server to a client. The Java LDAP SDK does not define or
process any client controls at this time, but it leaves the door open for incorporation
of any client controls that may be defined in standards documents in the future.

A directory server vendor is free to define proprietary controls. Often an Internet
Draft is published to describe a control that may be of more general interest. The Vir-
tual List View (VLV) control described in this chapter has been adopted by many or

534 Advanced Topics

most LDAP server vendors. A server must publish in the root DSE any controls that it
supports. Netscape Directory Server 4.1 reports the following:

java LDAPSearch -b "" -s base -h localhost -p 389 "objectclass=*"

supportedcontrol

dn:

supportedcontrol: 2.16.840.1.113730.3.4.2

supportedcontrol: 2.16.840.1.113730.3.4.3

supportedcontrol: 2.16.840.1.113730.3.4.4

supportedcontrol: 2.16.840.1.113730.3.4.5

supportedcontrol: 1.2.840.113556.1.4.473

supportedcontrol: 2.16.840.1.113730.3.4.9

supportedcontrol: 2.16.840.1.113730.3.4.12

The OIDs reported here are defined in the header file ldap.h, which comes with
the C LDAP SDK:

#define LDAP_CONTROL_MANAGEDSAIT "2.16.840.1.113730.3.4.2"

#define LDAP_CONTROL_SORTREQUEST "1.2.840.113556.1.4.473"

#define LDAP_CONTROL_PERSISTENTSEARCH "2.16.840.1.113730.3.4.3"

#define LDAP_CONTROL_VLVREQUEST "2.16.840.1.113730.3.4.9"

/* Password information sent back to client */

#define LDAP_CONTROL_PWEXPIRED "2.16.840.1.113730.3.4.4"

#define LDAP_CONTROL_PWEXPIRING "2.16.840.1.113730.3.4.5"

#define LDAP_CONTROL_PROXYAUTH "2.16.840.1.113730.3.4.12"

Although there are no restrictions on what the data in a control should look like,
a control intended for general use (by more than one vendor) most often has its data
encoded using the Basic Encoding Rules (BER) described in Chapter 2.

Too Much Data: A Virtual List View

A common task in LDAP applications is to list all the entries that match a particular
search filter—for example, in response to a user’s typing in part of a name to look up.
Another common feature is to display the contents of a directory as a tree that can be
browsed by the user. Both cases may be problematic if the number of entries to display
is very large. There may not be enough memory available to hold the entire list at
once. It may take a long time for the list to be received, and in the meantime the user is
waiting at an unresponsive user interface. The number of search results may be higher
than the server is configured to return on any one request, in which case the client will
get an exception.

Controls: An Essential Extension 535

The VLV control was designed to allow clients to request arbitrary subsets of the
search results. For example, clients may request 100 at a time while progressing
through the results, or they may jump back and forth in response to a user’s scrolling
through a list. The entire set of results that would have been returned on each search
without the control is called the virtual result set. The control allows the client to spec-
ify the starting point of the subset either as an absolute index into the virtual result set
or as a string to be matched. The number of results before and after the first result are
specified individually, offering an easily configurable window into the data. A client
can implement typedown—jumping to an entry in the virtual list in response to a user’s
typing in the first letters of a name—by accumulating user keystrokes and sending a
VLV control that requests the first entry matching the characters typed in so far.

An application that uses VLV can present the user with a scrolling list that works
just as well with a user database of 10 million entries as with a database of 1,000
entries.

A VLV request control has two constructors, corresponding to the two ways to
specify the starting point of the desired window into the result set. It may seem odd that
the client specifies contentCount—the size of the virtual result set—when creating a
control to access a window from a specific index. The server uses the number provided
by the client as a hint when determining the actual window, in case the client’s percep-
tion of the size of the virtual result set is radically different from the server’s perception.
Generally, contentCount is set to 0 on the first VLV search request. The VLV response
control contains the real number at the time of the search, and it is used by the client on
subsequent VLV requests involving the same search parameters:

LDAPVirtualListControl(int startIndex,

int beforeCount,

int afterCount,

int contentCount)

LDAPVirtualListControl(String jumpTo,

int beforeCount,

int afterCount)

Some servers (Novell Directory Services, for one) can process a request more effi-
ciently if they are supplied with a context cookie. A cookie is returned by the server in
a VLV response, and it should be provided in subsequent requests involving the same
VLV search:

public LDAPVirtualListControl(int startIndex,

int beforeCount,

int afterCount,

int contentCount,

String context)

536 Advanced Topics

The class has accessors that can be used to get the current settings or to change
them after the object has been constructed:

int getAfterCount

int getBeforeCount

int getIndex

int getListSize

void setListSize(int listSize)

void setRange(int startIndex, int beforeCount, int afterCount)

void setRange(String jumpTo, int beforeCount, int afterCount)

public String getContext

public void setContext(String context)

The server will include a VLV response control along with results from a search
that included a VLV request control. The VLV response control has methods to deter-
mine what the returned window is (it may be smaller than the requested window if
results were requested beyond the end of the result set) or if there was an error in pro-
ducing the results:

int getContentCount()

int getFirstPosition()

int getResultCode()

public String getContext()

Note that the the offset reported by getFirstPosition may not be exact. The
Internet Draft on VLV allows a server to report an approximate offset. In addition,
the directory content may change between searches. An LDAP server is generally not a
single-user system.

For the server to process a VLV request, a sort control must also be provided to
indicate how the results are to be ordered. The following code snippet shows one way
to do a VLV search and process the results.

LDAPControl[] pageControls = new LDAPControl[2];

// VLV requests also require a sort control; sort by common name

pageControls[0] = new LDAPSortControl(new LDAPSortKey("cn"),

true);

// Do an initial search to get the virtual list size.

// Keep one page before and one page after the start.

beforeCount = pageSize;

afterCount = pageSize;

selectedIndex = -1;

// Create the initial VLV request control; we don't know the

// virtual list size, so we specify 0 for the size parameter

Controls: An Essential Extension 537

LDAPVirtualListControl vlc;

pageControls[1] = vlc =

new LDAPVirtualListControl(0, beforeCount,

afterCount, 0);

LDAPSearchConstraints cons =

(LDAPSearchConstraints)ld.getSearchConstraints();

cons.setServerControls(pageControls);

// Do a search

try {

String[] attrs = { "cn" };

LDAPSearchResults result =

ld.search(base, ld.SCOPE_SUB, filter, attrs,

false, cons);

The search results are processed in the same way as for an ordinary search, but
the application should check if a VLV response control was returned. The VLV
response control will contain the size of the whole virtual list in entries, and the size
should be used in subsequent operations involving the same search. The server uses
the parameter on receipt in a VLV request control to better accommodate the desired
window of results.

// Check if we have a control returned

LDAPControl[] c = ld.getResponseControls();

if (c != null) {

for(int i = 0; i < c.length; i++) {

if (c[i] instanceof LDAPVirtualListResponse) {

LDAPVirtualListResponse response =

(LDAPVirtualListResponse)c[i];

selectedIndex =

response.getFirstPosition() - 1;

top =

Math.max(0, selectedIndex - beforeCount);

// Now we know the total size of the virtual

// list

size = response.getContentCount();

vlc.setListSize(size);

}

}

}

if (selectedIndex < 0) {

System.out.println("No VLV response control");

}

538 Advanced Topics

If pageSize is 50, then 51 results are returned (if there are at least that many
search results) because 0 was specified as the first index and there can be no results
before that index. If the search is repeated after the desired window is adjusted with

vlc.setRange(100, pageSize, pageSize);

then entries corresponding to indexes 50 through 150 will be returned.

VLV and Indexes: Defining a VLV Search and Filter for Netscape

Given all that VLV can do, why not use it on every search and page through the results
by making repeated calls to the directory? The answer is that the VLV Internet Draft
defines the protocol to use but not the server implementation, and LDAP servers gen-
erally cannot provide random subsets of search results for an arbitrary query. Some
servers may have certain predefined queries that can always be serviced on a VLV
search. Others—including Netscape Directory Server—can provide VLV results for
any query, but they can do so efficiently only if a special index exists for the query.

Netscape Directory Server attempts to sort all search results in memory to return
a requested window of entries if no index exists. This means that even if you request
only five entries in your VLV control, the server will read all entries of the virtual
result list into memory and sort them before returning the five results. If the query
results in a virtual list size of more than one or two thousand entries, a lot of memory
is used by the server to process the request and the response time degrades.

If the virtual list size is just a thousand or so entries, we haven’t gained much
compared to just reading all results and buffering them on the client. To allow efficient
browsing of millions of entries, we must create an index for the particular search we
are doing. The following steps are required with Netscape Directory Server to create a
new VLV index:

• Create a VLV search entry in the directory under cn=config,cn=ldbm. The
entry defines the base DN, scope, and search filter of the query.

• Create one or more VLV index entries under the search entry. Each entry
defines a sort order for the results.

• Stop the server or make it read-only.

• Run the vlvindex script to generate a new index or indexes.

• Restart the server or make it read/writeable.

The following is an example of creating an index for a search for any person
entry under o=Airius.com, sorted by last name, first name.

Controls: An Essential Extension 539

java LDAPModify -D "cn=directory manager" -w password -a

dn: cn=Find all persons, cn=config, cn=ldbm

objectclass: top

objectclass: vlvSearch

cn: Find all persons

vlvbase: o=Airius.com

vlvfilter: objectclass=person

vlvscope: 2

dn: cn=LastNameFirstName, cn=Find all persons, cn=config, cn=ldbm

objectclass: top

objectclass: vlvIndex

cn: LastNameFirstName

vlvsort: sn givenName

ctrl-D (Unix) or ctrl-Z (Windows)

cd /usr/netscape/server4/slapd-foo

stop-slapd

vlvindex "LastNameFirstName"

start-slapd

Note that the search scope must be specified with numerals (0 for base, 1 for
one-level, and 2 for subtree). We have now created an index for all entries in the direc-
tory that match our query. When entries are added to the directory or modified, the
index will automatically be kept up-to-date. Any VLV search that exactly matches the
query will be serviced quickly and efficiently. This can be verified with LDAPSearch.
We must use exactly the same base DN, scope, search filter, and sorting attributes that
we specified when creating the index:

java LDAPSearch -D "uid=scarter, ou=People, o=airius.com" -w sprain

-b "o=Airius.com" -s sub -S "sn givenName" -x -G 2:2:10:0

"objectclass=person" cn

dn: uid=jbourke, ou=People, o=airius.com

cn: Jon Bourke

dn: uid=jbrown, ou=People, o=airius.com

cn: Judy Brown

dn: uid=jburrell, ou=People, o=airius.com

cn: James Burrell

dn: uid=jcampai2, ou=People, o=airius.com

cn: Jeffrey Campaigne

540 Advanced Topics

dn: uid=jcampaig, ou=People, o=airius.com

cn: Jody Campaigne

Server indicated results sorted OK

Server indicated virtual list positioning OK

index 10 content count 150

The -x option to turn on server-side sorting is required when using VLV. The -G
option specifies the beforeCount, afterCount, and firstIndex of the desired win-
dow and the size (if known) of the virtual list.

The Internet Draft on VLV does not define how access control is to be assigned for
using VLV. A subtree search with VLV will tell the caller how many entries exist under
that node, even if the caller does not have access rights to read those entries. That may
be an unacceptable security breach in many organizations. Netscape Directory Server
declares VLV as a feature with its own directory entry, so any access control desired can
be applied to it. The default access control for VLV searches is to allow them for any
authenticated user (but not for anonymous users). The access control can be modified by
changing or adding to the aci attribute in the entry oid=2.16.840.1.113730.3.4.9,

cn=features,cn=config. Other servers may not allow setting access control on VLV
searches, or they may require setting it in another way.

A VLV-Based Directory Lister with Typedown

We’ll pull all this information together in VListPanel (Figure 16-1), a JavaBean that
extends JList and presents the results of a VLV search. To test-drive the Bean, we will
place it in a dialog box with a text field for typedown. As you type into the field, the
list contents are updated or scrolled.

All JavaBeans must have a blank constructor for deserialization, but it is conve-
nient also to have one in which you can set all parameters at once:

/**

* A JavaBean that extends JList and contains a list of sorted

* names from a directory. It is a property change listener for

* string changes - the list updates itself and scrolls to the

* first name matching the characters in a supplied string.

* This is for typedown support.

*/

public class VListPanel extends JList

implements PropertyChangeListener,

Serializable {

public VListPanel() {

super();

}

Controls: An Essential Extension 541

public VListPanel(LDAPConnection ldc, String base,

int scope, String filter,

String[] sortAttrs) {

super();

_ldc = ldc;

_base = base;

_scope = scope;

_filter = filter;

_sortAttrs = sortAttrs;

initialize();

}

The initialize method can be called more than once. If any of the Bean prop-
erties change, then initialize is called again to create a new virtual list model to
supply data:

/**

* Create model and user interface

542 Advanced Topics

VListPanel()
VListPanel(ldc : LDAPConnection, base : String, scope : int, filter :

String, sortAttrs : String[])
initialize() : void
getLDAPConnection() : LDAPConnection
setLDAPConnection(ldc : LDAPConnection) : void
getBase() : String
setBase(base : String) : void
getScope() : int
setScope(scope : int) : void
getFilter() : String
setFilter(filter : String) : void
getSortAttributes() : String[]
setSortAttributes(attrs : String[]) : void
getDisplayAttribute() : String
setDisplayAttribute(attr : String) : void
setDebug(debug : boolean) : void
getDebug() : boolean
readyToGo() : boolean
propertyChange(evt : PropertyChangeEvent) : void
doTypedown(text : String) : void
scrollSelectedToTop(oldTop : int) : void

VListPanel

FIGURE 16-1. VListPanel.

*/

protected void initialize() {

// We don't want the JList implementation to compute

// the width or height of all the list cells,

// so we give it a String that's as big as we'll need for

// any cell. It uses this to compute values for

// the fixedCellWidth and fixedCellHeight properties.

setPrototypeCellValue("12345678901234567890123456789");

_model = new VListModel(_ldc, _base, _scope,

_filter, _sortAttrs);

setModel(_model);

_model.setPageSize(getVisibleRowCount());

}

There are accessors for all the properties—LDAPConnection, base, scope,
filter, sort attributes, display attribute, debug state—but we will not list
them here.

The Bean is a listener for property changes. If the typedown property changes,
then it notifies the virtual list model that it must update itself and scrolls so that the
selected item is visible:

/**

* On a property change event, do typedown to the new

* string value

*

* @param evt an event indicating a changed typedown

* string

*/

public void propertyChange(PropertyChangeEvent evt) {

if (evt.getPropertyName().equals("typedown")) {

String newVal = "";

Object obj = (Object)evt.getNewValue();

if ((obj != null) && (obj instanceof String)) {

newVal = (String)obj;

}

doTypedown(newVal);

}

}

/**

* Tell the model to do typedown, and then scroll the list

* so that the selected index is visible

Controls: An Essential Extension 543

*/

protected void doTypedown(String text) {

int top = _model.getFirstIndex();

_model.typedown(text);

scrollSelectedToTop(top);

}

The scrolling behavior is more attractive if we take into account the direction in
which we are scrolling:

/**

* Scroll so that the user-selected first index is visible

*

* @param oldTop the top index before we make any changes

*/

protected void scrollSelectedToTop(int oldTop) {

int index = _model.getSelectedIndex();

// If scrolling down, make sure the selected index

// becomes the topmost one

if (_model.getFirstIndex() > oldTop)

index += getVisibleRowCount() - 1;

ensureIndexIsVisible(index);

}

VListModel (Figure 16-2) does the real work of interacting with the directory
when the list needs data to display:

class VListModel extends AbstractListModel {

/**

* All parameters of the model are passed in to the

* constructor

*

* @param ldc a sufficiently authenticated connection to a

* server

* @param base the base DN for the search

* @param scope the search scope

* @param filter the search filter

* @param sortAttrs one or more attributes to sort by

*/

VListModel(LDAPConnection ldc, String base, int scope,

String filter, String[] sortAttrs) {

_base = base;

_scope = scope;

_filter = filter;

544 Advanced Topics

_sortAttrs = sortAttrs;

_ldc = ldc;

_cons = _ldc.getSearchConstraints();

}

JList asks its model how many list items there are, and then when it needs to
display a particular range of items—because the user has clicked on the scroll bar or
because the JList has become visible after having previously been covered by another
GUI component—it asks the model for each item in turn.

The first time the model is asked for the list size, it does a VLV search to find the
answer. To avoid having to do a search every time it gets a request for an item, the
model retrieves a cache of one page before and two pages after a requested item (if
the item is not already in the cache). A “page” is the number of items that are visible
in the list without scrolling. The getSize method fills the cache starting at index 0
if the model hasn’t already been initialized:

/**

* Called by JList to get virtual list size. The vertical scroll-

Controls: An Essential Extension 545

VListModel(ldc : LDAPConnection, base : String, scope : int, filter :
String, sortAttrs : String[])

getSize() : int
getPage(first : int) : boolean
getEntries() : boolean
getPage() : boolean
getElementAt(index : int) : Object
typedown(text : String) : boolean
getSelectedIndex() : int
getFirstIndex() : int
getDisplayAttribute() : String
setDisplayAttribute(attr : String) : void
setDebug(debug : boolean) : void
getDebug() : boolean
setPageSize(size : int) : void

VListModel

VListPanel

1..1

FIGURE 16-2. VListModel.

* bar is sized using the return value.

*

* @return the size of the virtual list

*/

public int getSize() {

if (!_initialized) {

_initialized = true;

_pageControls = new LDAPControl[2];

// VLV also require a sort control

LDAPSortKey[] keys =

new LDAPSortKey[_sortAttrs.length];

for(int i = 0; i < keys.length; i++) {

keys[i] = new LDAPSortKey(_sortAttrs[i]);

}

_pageControls[0] =

new LDAPSortControl(keys, true);

// Do an initial search to get the virtual list

// size. Keep one page before and two pages after

// the start.

_beforeCount = _pageSize;

_afterCount = _pageSize * 2;

// Create the initial paged results control

_vlc =

new LDAPVirtualListControl(0, _beforeCount,

_afterCount, 0);

_pageControls[1] = _vlc;

// Specify necessary controls for VLV

_cons.setServerControls(_pageControls);

// Bump the max results requested to unlimited

_cons.setMaxResults(0);

getPage(0);

}

return _size;

}

On filling the cache from the directory, the VLV response control is examined to
determine the exact window into the virtual list that was returned:

/**

* Get a page starting at a specified index (although we

* may also fetch some preceding entries to our buffer)

*

* @param first the index of the first entry required

* @return true if entries could be retrieved

546 Advanced Topics

*/

protected boolean getPage(int first) {

_vlc.setRange(first, _beforeCount, _afterCount);

if (_debug) {

System.out.println("Setting requested range to " +

first + ", -" + _beforeCount +

", +" + _afterCount);

}

return getPage();

}

/**

* Fetch a buffer

*

* @return true if entries could be retrieved

*/

protected boolean getPage() {

// Get the actual entries

if (!getEntries())

return false;

// Check if we have a control returned

LDAPControl[] c = _ldc.getResponseControls();

LDAPVirtualListResponse response = null;

if (c != null) {

for(int i = 0; i < c.length; i++) {

if (c[i] instanceof LDAPVirtualListResponse) {

response = (LDAPVirtualListResponse)c[i];

break;

}

}

}

if (response != null) {

_selectedIndex = response.getFirstPosition() - 1;

_top = Math.max(0, _selectedIndex - _beforeCount);

// Now we know the total size of the virtual list

// box

_size = response.getContentCount();

_vlc.setListSize(_size);

if (_debug) {

System.out.println("Virtual window: " + _top +

".." +

(_top+_entries.size()-1) +

" of " + _size);

Controls: An Essential Extension 547

}

} else {

System.out.println("Null response control");

}

return true;

}

The getEntries method composes the search operation from the properties that
were set when the model was constructed. A user-specified attribute is cached for each
entry found. The displayAttribute property can be set to “dn” if the DN is to be
presented instead of an attribute:

/**

* Fill the buffer with entries from a search

*

* @return true if entries could be retrieved

*/

protected boolean getEntries() {

// Empty the buffer

_entries.removeAllElements();

// Do a search

try {

String[] attrs = { _displayAttr };

LDAPSearchResults res =

_ldc.search(_base,

_scope,

_filter,

attrs,

false,

_cons);

while (res.hasMoreElements()) {

try {

LDAPEntry entry = res.next();

// Allow the user to specify that the DN

// should be displayed

if (_displayAttr.equalsIgnoreCase(

"dn")) {

_entries.addElement(entry.getDN());

} else {

LDAPAttribute attr =

entry.getAttribute(attrs[0]);

if (attr != null) {

Enumeration en =

attr.getStringValues();

548 Advanced Topics

while(en.hasMoreElements()) {

String name =

(String)en.nextElement();

_entries.addElement(name);

}

}

}

} catch (LDAPException ex) {

System.out.println(ex + ", enumerating");

}

}

} catch (LDAPException e) {

System.out.println(e + ", searching");

return false;

}

if (_debug) {

System.out.println("Returning " +

_entries.size() + " entries");

}

return true;

}

When JList asks for a particular list item, the model checks its cache first. If the
item is not found, the cache is refilled from the directory:

/**

* Called by JList to fetch data to paint a single list item

*

* @param index the index of the item to return

* @return the list item at the requested index

*/

public Object getElementAt(int index) {

if (_debug) {

System.out.println("need entry " + index);

}

if ((index < _top) ||

(index >= _top + _entries.size())) {

if (_debug) {

System.out.println("fetching a page " +

"starting at " +

index);

}

getPage(index);

}

Controls: An Essential Extension 549

int offset = index - _top;

if ((offset < 0) || (offset >= _entries.size())) {

return new String("No entry at " + index);

} else {

return _entries.elementAt(offset);

}

}

The typedown method is called to fetch a list item by string matching rather than
by index:

/**

* Called by an application to scroll the list so that a

* particular entry is visible.

* Considers text to be an initial substring of an entry.

*

* @param text text to match

* @return true if entries could be provided

*/

public boolean typedown(String text) {

_pageControls[1] = _vlc =

new LDAPVirtualListControl(text,

_beforeCount,

_afterCount);

if (_debug) {

System.out.println("Setting requested start to " +

text + ", -" + _beforeCount +

", +" + _afterCount);

}

return getPage();

}

There are accessors for the properties, including the page size, and the following
methods to allow a client to determine what the current window of the model is:

/**

* Called by application to find out the virtual selected

* index

*

* @return the index of the first entry in the selected

* window

*/

public int getSelectedIndex() {

return _selectedIndex;

550 Advanced Topics

}

/**

* Called by application to find out the top of the buffer

*

* @return the index of the first entry in the buffer

*/

public int getFirstIndex() {

return _top;

}

Our sample application that uses VListPanel is VListDialog (Figure 16-3). It
takes all the parameters from the command line—host, port, search parameters—and
creates a VListPanel and a few text fields. It registers the VListPanel as a property
change listener of itself, so it can notify the panel of typedown changes:

public class VListDialog extends JDialog

implements DocumentListener {

/**

Controls: An Essential Extension 551

VListDialog(ldc : LDAPConnection, base : String, scope : int, filter :
String, sortAttrs : String[])

addTextField(panel : Container, gbc : GridBagConstraints, label :
JLabel, field : JTextField) : void

initUI(listPanel : JComponent, host : String, port : int, base :
String, filter : String) : void

changedUpdate(e : DocumentEvent) : void
removeUpdate(e : DocumentEvent) : void
insertUpdate(e : DocumentEvent) : void
doTypedown() : void
addPropertyChangeListener(listener : PropertyChangeListener) : void
removePropertyChangeListener(listener : PropertyChangeListener) : void
firePropertyChange(propName : String, oldValue : Object, newValue :

Object) : void
main(args : String[]) : void

VListDialog

VListPanel

1..1

FIGURE 16-3. VListDialog.

* All configuration is done through parameters in the

* constructor

*

* @param ldc a sufficiently authenticated connection to a

* server

* @param base the base DN for the search

* @param scope the search scope

* @param filter the search filter

* @param sortAttrs one or more attributes to sort by

*/

public VListDialog(LDAPConnection ldc, String base,

int scope, String filter,

String[] sortAttrs) {

super(new JFrame(), true);

VListPanel listPanel =

new VListPanel(ldc, base, scope, filter,

sortAttrs);

// The panel is to be notified of changes in the

// typedown field

addPropertyChangeListener(listPanel);

initUI(listPanel, ldc.getHost(), ldc.getPort(), base,

filter);

setTitle(base);

}

The final interesting thing that VListDialog does is to register itself as a
DocumentListener to the typedown text field. VListDialog will be notified whenever
a user types or deletes a character in the field:

// Add the field where the user can type in

_typedown = new JTextField("");

_typedown.getDocument().addDocumentListener(this);

Whenever the contents of the typedown text field change, VListPanel is notified:

/**

* Implement the DocumentListener interface.

* Catch all changes in the typedown text field and update the

* scrolling list.

*

552 Advanced Topics

* @param e the event from the typedown text field Document

*/

public void changedUpdate(DocumentEvent e) {

doTypedown();

}

public void removeUpdate(DocumentEvent e) {

doTypedown();

}

public void insertUpdate(DocumentEvent e) {

doTypedown();

}

/**

* Tell the model to do typedown, and then scroll the list so the

* selected index is visible

*/

private void doTypedown() {

firePropertyChange("typedown", _oldText,

_typedown.getText());

_oldText = _typedown.getText();

}

The application uses a PropertyChangeSupport object to facilitate the registra-
tion of listeners and dispatching of events:

/**

* Add a client to be notified when an authentication result

* is in

* @param listener a client to be notified of changes

*/

public void addPropertyChangeListener(

PropertyChangeListener listener) {

_propSupport.addPropertyChangeListener(listener);

}

/**

* Remove a client that had requested notification on

* authentication

* @param listener a client not to be notified of changes

*/

public void removePropertyChangeListener(

PropertyChangeListener listener) {

_propSupport.removePropertyChangeListener(listener);

}

Controls: An Essential Extension 553

/**

* Support for bound property notification

* @param propName name of changed property

* @param oldValue previous value of property

* @param newValue new value of property

*/

public void firePropertyChange(String propName,

Object oldValue,

Object newValue) {

_propSupport.firePropertyChange(propName, oldValue,

newValue);

}

private PropertyChangeSupport _propSupport =

new PropertyChangeSupport(this);

Execute the application as follows. Note that some form of authentication is
required (at least, with Netscape Directory Server) because VLV is by default not
available to anonymous users.

java VListDialog localhost 389 "o=airius.com" "objectclass=person"

"sn=givenName" "uid=scarter, ou=People, o=airius.com" sprain

This query requests all person entries under o=Airius.com, sorted by last name,
first name. When the application starts, the scrolling list is at the first entry in the
search results (see Figure 16-4).

If you start typing something into the typedown field, the list scrolls so that the
first matching entry becomes visible (see Figure 16-5), retrieving new entries from the
directory if necessary.

Call Me When You’re Ready: Persistent Search

Some applications need to know when certain entries or certain areas of a directory
change. One example is a very directory-intensive server application that maintains a
large cache of directory entries to reduce the number of searches it must do. Rather
than polling the directory or refreshing the cache at regular intervals, the developer of
the application would like the application to be notified when there are changes that
make the cache invalid, so that the cache can be updated then.

The persistent search control is designed to address the need for notifications of
changes in the directory. When a persistent search control is provided on a search, the
search does not terminate, but stays active. When changes occur that would result in
different search results from the time the search was requested, the results are
returned to the client but the search remains active.

554 Advanced Topics

Controls: An Essential Extension 555

FIGURE 16-4. VListDialog at start-up.

FIGURE 16-5. VListDialog after typing two characters.

Most applications that use a persistent search dedicate a thread to it because the
search blocks until there are changes.

The SDK contains a sample program that demonstrates a persistent search in one
thread and a regular search simultaneously in another thread: PersistSearch.java.
The class implements Runnable so that it can easily be executed in a thread. In the run
method, the two threads do identical searches, except that one of them sets the batch
size to 1 and adds a persistent search control to the operation:

LDAPSearchConstraints cons1 =

(LDAPSearchConstraints)ld1.getSearchConstraints().clone();

cons1.setBatchSize(1);

int op = LDAPPersistSearchControl.ADD;

boolean changesOnly = true;

boolean returnControls = false;

boolean isCritical = true;

LDAPPersistSearchControl control = new

LDAPPersistSearchControl(op, changesOnly,

returnControls, isCritical);

cons1.setServerControls(control);

LDAPSearchResults res1 = ld1.search(searchbase, ld1.SCOPE_SUB,

filter, attrs,

false, cons1);

The program asks for notification only when entries are added to the directory.
It doesn’t want change controls returned with every entry, and it doesn’t want the
search to be executed if the server does not support persistent search. The constructor
parameters for LDAPPersistSearchControl are as follows:

• changeTypes. The types of changes to be monitored. You can perform a
bitwise OR on any of the following values and specify the result as the
changeTypes parameter:

• LDAPPersistSearchControl.ADD (to track new entries added to the
directory)

• LDAPPersistSearchControl.DELETE (to track entries removed from the
directory)

• LDAPPersistSearchControl.MODIFY (to track entries that have been
modified)

• LDAPPersistSearchControl.MODDN (to track entries that have been
renamed)

• changesOnly. True if you do not want the server to return all existing
entries in the directory that match the search criteria (you just want the
changed entries to be returned).

556 Advanced Topics

• returnControls. True if you want the server to return entry change con-
trols with each entry in the search results.

• isCritical. True if this control is critical to the search operation (if the
server does not support this control, you may not want the server to per-
form the search at all).

Search results are received just as in any other search.
In the LDAPPersistSearchControl constructor, if the application specified true

for returnControls, the server would return an LDAPEntryChangeControl with each
search result. It could then determine the type of each change and the previous DN for
an entry that has been deleted or that now has a new DN:

// Check if we have a control returned

LDAPControl[] c = _ldc.getResponseControls();

LDAPEntryChangeControl response = null;

if (c != null) {

for(int i = 0; i < c.length; i++) {

if (c[i] instanceof LDAPEntryChangeControl) {

response = (LDAPEntryChangeControl)c[i];

break;

}

}

}

if (response != null) {

switch(response.getChangeType()) {

case: response.ADD:

break;

case: response.DELETE:

String oldDN = response.getPreviousDN();

break;

case: response.MODIFY:

break;

case: response.MODDN:

String oldDN = response.getPreviousDN();

break;

}

}

Password Expiration Notification

If Netscape Directory Server has been configured to enable password expiration, it
may send a password-expiring control to a client at the time the client authenticates.
The control will be sent only if the client is authenticating with version 3 of the LDAP

Controls: An Essential Extension 557

protocol and if the authenticating user’s password is to expire within the expiration
warning time configured for the server.

If the Directory Manager has reset a user’s password, the user will receive a
password-expired control if the client is authenticating with LDAP version 3.

You can identify these cases in your code and warn the user. The SDK contains a
sample application—PasswordPolicy.java—that demonstrates the parsing of pass-
word expiration controls on authenticating.

A couple of local constants are declared for possible outcomes of checking for
password expiration controls:

final static int NO_PASSWORD_CONTROLS = 0;

final static int PASSWORD_EXPIRED = -1;

First the possible exceptions on authenticating must be examined:

try {

ld.authenticate(3, DN, PW);

System.out.println("Authentication successful");

} catch(LDAPException e) {

if (e.getLDAPResultCode() ==

LDAPException.INVALID_CREDENTIALS) {

System.out.println("Invalid credentials");

} else if (e.getLDAPResultCode() ==

LDAPException.NO_SUCH_OBJECT) {

System.out.println("No such user");

} else {

System.out.println("Error on authentication: " +

e.toString());

}

}

On success, a check is made to see if any password expiration controls were
returned. If a password-expiring control was returned, the number of seconds until
expiration is extracted:

/* Were any controls returned? */

int seconds = checkControls(ld);

switch(seconds) {

case NO_PASSWORD_CONTROLS:

System.out.println("No controls returned");

break;

case PASSWORD_EXPIRED:

System.out.println("Password expired and must " +

558 Advanced Topics

"be reset");

break;

default:

System.out.println("Password expires in " +

seconds + " seconds");

}

private static int checkControls(LDAPConnection ld) {

LDAPControl[] controls = ld.getResponseControls();

int status = NO_PASSWORD_CONTROLS;

if (controls != null) {

for(int i = 0; i < controls.length; i++) {

if (controls[i] instanceof

LDAPPasswordExpiredControl) {

status = PASSWORD_EXPIRED;

break;

} else if (controls[i] instanceof

LDAPPasswordExpiringControl) {

// Return the number of seconds until expiration

LDAPPasswordExpiringControl c =

(LDAPPasswordExpiringControl)controls[i];

status = c.getSecondsToExpiration();

break;

}

}

}

return status;

}

Trust Me: The Proxied Authorization Control

Many server applications leverage the authentication and access control functionality
of a directory server by taking a user’s credentials and authenticating, and then doing
a search using the user’s identity; the results of the authentication indicate if the user is
who she says she is, and the results of the search indicate if she is authorized to exe-
cute the particular task she has requested. Although authenticating is a quick opera-
tion for most directory servers, it is still an extra operation for each user, which could
add up if the server receives frequent requests from different users.

An Internet Draft has been written for a control that can be provided along with
any LDAP operation and that contains the DN of a directory entry. If the server deems
the requester trustworthy enough, it will execute the operation using the identity spec-
ified in the control.

Controls: An Essential Extension 559

Netscape Directory Server 4.1 and later versions implement the control, and the
control is supported in the SDK. If a request containing a proxied authorization con-
trol is received, the server checks if the requester has proxy access rights within the
subtree specified for the operation (for example, the base DN for a search, or the DN
for a modify operation). An ACI granting this right looks like this:

aci: (targetattr = "*")(version 3.0; acl "Proxy rights for admin";

allow (proxy) userdn = "ldap:///uid=admin, o=acme.com";)

Unless proxy rights have been granted to anonymous users (not a good idea!),
the connection must have already been authenticated at that point. If the requester has
proxy rights, the server evaluates access control for the operation as if it were
requested by the DN in the control. For example:

LDAPConnection ld = new LDAPConnection();

try {

// Connect to server

ld.connect(3, hostname, portnumber,

"uid=admin,o=acme.com", "password");

// Create a "critical" proxied auth server control using

// the DN "uid=charlie,ou=people,o=acme.com"

LDAPProxiedAuthControl ctrl =

new LDAPProxiedAuthControl(

"uid=charlie,ou=people,o=acme.com",

true);

// Create search constraints to use that control

LDAPSearchConstraints cons = ld.getSearchConstraints();

cons.setServerControls(ctrl);

// Send the search request

LDAPSearchResults res =

ld.search("ou=people,o=acme.com",

ld.SCOPE_SUB, "(cn=Barbara*)",

null, false, cons);

The search will be executed as uid=charlie if the DN uid=admin,o=acme.com
has proxy rights for the subtree ou=people,o=acme.com. If not, an LDAPException is
thrown with the error code INSUFFICIENT_ACCESS_RIGHTS.

You might wonder, How does the application know that the user really is
uid=charlie if it doesn’t attempt to authenticate as uid=charlie? The authentica-

560 Advanced Topics

tion is assumed to have taken place earlier or outside of this code (for example, by a
Web server), and does not need to be done here. One very important example in
which this is the case is server applications that accept SSL client authentication. The
server-side code (for example, a servlet running on a Web server that can do SSL
authentication against a directory) is notified that the client has successfully com-
pleted SSL client authentication. The servlet then checks the DN for which the authen-
tication was negotiated (available through the servlet API) and uses the DN in a
proxied authorization control for all operations on behalf of the user.

Proxied authorization works very well in server-side programming also when cer-
tificates are not involved. Most server applications execute user requests as the identity
of the user. A Web server may prompt the user for a user ID and password on attempt-
ing to enter a Web page, and authenticate the user against a directory. A servlet or other
Web server–hosted service can find out the DN the user was authenticated as, but not
the password, for security reasons. For the servlet to perform an operation with the
identity of the user, it must reprompt for the password so that it can authenticate as the
user to the directory. With proxied authorization, however, the servlet maintains its
own authenticated connection but requests the operation to be performed on behalf of
the user requesting it, using the DN it received from the Web server.

Your Very Own Controls: Using the BER Package

We mentioned earlier that most controls that are not proprietary to one company use
Basic Encoding Rules to encode any data. The SDK includes a complete package for
encoding and decoding data types that are used in LDAP: netscape.ldap.stream.ber.
The BER package is not described in the general SDK documentation, and it is not
covered by the Internet Drafts on the Java LDAP API.

Constructing a Control

Let’s start by looking at how a VLV request control is constructed. All controls extend
LDAPControl, which provides common methods and support, and define a unique
OID. The OID is passed to the superclass constructor in any local constructors:

public class LDAPVirtualListControl extends LDAPControl {

public final static String VIRTUALLIST =

"2.16.840.1.113730.3.4.9";

public LDAPVirtualListControl(String jumpTo,

int beforeCount,

int afterCount) {

super(VIRTUALLIST, true, null);

setRange(jumpTo, beforeCount, afterCount);

}

Controls: An Essential Extension 561

public LDAPVirtualListControl(int startIndex,

int beforeCount,

int afterCount,

int contentCount) {

super(VIRTUALLIST, true, null);

m_listSize = contentCount;

setRange(startIndex, beforeCount, afterCount);

}

The parameters of the LDAPControl constructor used in this case are the OID of
the control, a boolean isCritical (if it is true, a request containing the control will
be rejected if the server does not support the control; if false, the server will ignore
the control if it is not recognized), and a byte array containing an arbitrary value of
the control. The value is passed as null in this case because the control creates a BER-
encoded byte array from the constructor parameters in the setRange method.

The contents of the control are defined in ASN.1 notation as follows:

VirtualListViewRequest ::= SEQUENCE {

beforeCount INTEGER (0 .. maxInt),

afterCount INTEGER (0 .. maxInt),

CHOICE {

byIndex [0] SEQUENCE {

index INTEGER,

contentCount INTEGER

}

byFilter [1] jumpTo Substring

},

contextID OCTET STRING OPTIONAL

}

Note that there is an optional final STRING field. The control includes a CHOICE
statement, so there are two possible data contents. The number in brackets after the
name of each option is the tag that identifies which case is implemented in an instance
of the control.

LDAPVirtualListControl constructs the first option as follows:

private final static int TAG_BYINDEX = 0;

private final static int TAG_BYFILTER = 1;

private byte[] createPageSpecification(int listIndex,

int listSize,

int beforeCount,

int afterCount) {

562 Advanced Topics

/* A sequence */

BERSequence seq = new BERSequence();

seq.addElement(new BERInteger(beforeCount));

seq.addElement(new BERInteger(afterCount));

/* A sequence of list index and list size */

BERSequence indexSeq = new BERSequence();

indexSeq.addElement(new BERInteger(listIndex));

indexSeq.addElement(new BERInteger(listSize));

seq.addElement(

new BERTag(BERTag.CONTEXT|BERTag.CONSTRUCTED|

TAG_BYINDEX, indexSeq, true));

if (_context != null) {

seq.addElement(new BEROctetString(_context));

}

/* Suck out the data and return it */

return flattenBER(seq);

}

We create the required BER-encoded byte array by instantiating various
basic BER objects (BERInteger in this case), adding them to sequence elements
(BERSequence) as dictated by the ASN.1 for the particular control, and then streaming
the outermost element to a byte array. Since the VLV request control contains a
CHOICE field, it must also include a tag (BERTag) that indicates which of the options is
present. The flattenBER method in LDAPControl (which is the superclass for all con-
trol classes) converts the results into a byte array appropriate for transmission in an
LDAP request.

When a string rather than an index is used to identify the first result, the follow-
ing code constructs the byte array.

private byte[] createPageSpecification(String subFilter,

int beforeCount,

int afterCount) {

/* A sequence */

BERSequence seq = new BERSequence();

seq.addElement(new BERInteger(beforeCount));

seq.addElement(new BERInteger(afterCount));

seq.addElement(new BERTag(

BERTag.CONTEXT|TAG_BYFILTER,

new BEROctetString(subFilter),

true));

/* Optional context cookie */

if (_context != null) {

seq.addElement(new BEROctetString(_context));

Controls: An Essential Extension 563

}

/* Suck out the data and return it */

return flattenBER(seq);

}

The string option uses a BEROctetString to encode the value and sets the tag for
the CHOICE field to 1 (TAG_BY_FILTER). The BERTag.CONTEXT constant, which is
OR’ed with the tag number, indicates that the tag number is specific to this control; it
is not a global tag number shared with other BER elements.

The netscape.ldap.ber.stream package includes the classes listed in Table
16-1 for encoding basic data types. Of these classes, the ones you are most likely to
use in writing new controls are BERInteger, BEROctetString, BERBoolean, and
BEREnumerated.

The classes listed in Table 16-2 provide the constructs for grouping and tagging
the data elements. The BERTag element always contains another element, which may
be a basic type or another BERTag.

Decoding a BER-Encoded Byte Array

Now that we know how to construct the contents of a control using the BER package,
how do we decode a byte array received from the server into something usable in an
application? Let’s look at LDAPVirtualListResponse.

564 Advanced Topics

TABLE 16-1. BER classes for encoding basic data types.

CLASS CORRESPONDING ASN.1 ELEMENT

BERBitString BitString

BERBoolean Boolean

BEREnumerated Enumerated

BERInteger Integer

BERNull NULL

BERNumericString Numeric

BERObjectId ObjectID

BEROctetString OctetString

BERPrintableString PrintableString

BERReal Real

BERUTCTime UTCTime

BERVisibleString VisibleString

As with the request control, LDAPVirtualListResponse extends LDAPControl
and passes its unique OID to the superclass constructor. The main local constructor
takes a byte array as input and parses it into member variables:

public class LDAPVirtualListResponse extends LDAPControl {

public final static String VIRTUALLISTRESPONSE =

"2.16.840.1.113730.3.4.10";

/**

* Constructs a new LDAPVirtualListResponse

* object

* @param value a BER-encoded byte array

* @see netscape.ldap.LDAPControl

*/

public LDAPVirtualListResponse(byte[] value) {

super(VIRTUALLISTRESPONSE, true, null);

m_value = value;

parseResponse();

}

All response controls should have a constructor that takes an OID, a boolean (for
criticality), and a byte array so that they can be instantiated by the SDK when received
from the server:

/**

* Contructs an LDAPVirtualListResponse object

* @param oid This parameter must be equal to

* LDAPVirtualListResponse.VIRTUALLISTRESPONSE, or an

* LDAPException is thrown

* @param critical true if this control is critical

* @param value the value associated with this control

* @exception netscape.ldap.LDAPException If oid is not

* LDAPVirtualListResponse.VIRTUALLISTRESPONSE

* @see netscape.ldap.LDAPControl#register

Controls: An Essential Extension 565

TABLE 16-2. BER classes for grouping and tagging data elements.

CLASS CORRESPONDING ASN.1 ELEMENT

BERChoice Choice

BERSequence Sequence

BERSet Set

BERTag Tagged object

*/

public LDAPVirtualListResponse(String oid, boolean critical,

byte[] value)

throws LDAPException {

this(value);

if (!oid.equals(VIRTUALLISTRESPONSE)) {

throw new LDAPException(

"oid must be " +

"LDAPVirtualListResponse." +

"VIRTUALLISTRESPONSE",

LDAPException.PARAM_ERROR);

}

}

The ASN.1 notation for the VLV response control is as follows:

VirtualListViewResponse ::= SEQUENCE {

targetPosition INTEGER (0 .. maxInt),

contentCount INTEGER (0 .. maxInt),

virtualListViewResult ENUMERATED {

success (0),

operatonsError (1),

timeLimitExceeded (3),

adminLimitExceeded (11),

insufficientAccessRights (50),

busy (51),

unwillingToPerform (53),

sortControlMissing (60),

offsetRangeError (61),

other (80)

},

contextID OCTET STRING OPTIONAL

}

The LDAPVirtualListResponse class decodes the byte array returned from the
server by opening an input stream on it, creating a tag decoder, and then using
BERElement.getElement to read the stream contents into a sequence object.
BERElement is the superclass for all BER classes except BERTagDecoder. BERTagDecoder
is an abstract class for interpreting tags specific to a particular “application.”

The netscape.ldap.clients.JDAPBERTagDecoder class extends BERTagDecoder
in providing a getElement method that is aware of all the tags used in BER encodings
in LDAP version 3. BerElement.getElement extracts a byte array for one element

566 Advanced Topics

from a stream and uses a BERTagDecoder to interpret any tags and construct an object
(one of the classes in the BER package):

private void parseResponse() {

/* Suck out the data and parse it */

ByteArrayInputStream inStream =

new ByteArrayInputStream(getValue());

BERSequence ber = new BERSequence();

JDAPBERTagDecoder decoder = new JDAPBERTagDecoder();

int[] nRead = new int[1];

nRead[0] = 0;

try {

/* A sequence */

BERSequence seq =

(BERSequence)BERElement.getElement(decoder,

inStream,

nRead);

/* First is firstPosition */

m_firstPosition =

((BERInteger)seq.elementAt(0)).getValue();

m_contentCount =

((BERInteger)seq.elementAt(1)).getValue();

m_resultCode =

((BEREnumerated)seq.elementAt(2)).getValue();

/* Optional context cookie */

if(seq.size() > 3) {

BEROctetString str =

(BEROctetString)seq.elementAt(3);

m_context = new String(str.getValue(), "UTF8");

}

} catch(Exception x) {

m_firstPosition = m_contentCount =

m_resultCode = -1;

m_context = null;

}

}

A New Control

The following steps are required to implement a custom request control:

1. Extend LDAPControl.

2. Define a unique OID.

Controls: An Essential Extension 567

3. In the control constructor, call the superclass constructor with the OID.

4. Compose the contents of the control from parameters in the constructor
and assign them to the m_value member as a byte array. Use the BER pack-
age if the contents are to be BER encoded.

5. Optionally, provide accessors for any control parameters.

The following steps are required to implement a custom response control:

1. Extend LDAPControl.

2. Define a unique OID.

3. In the control constructor, call the superclass constructor with the OID.

4. There should be a constructor that takes an OID, a criticality value, and a
byte array; this constructor is called by the SDK to instantiate a control
received from the server.

5. Parse a byte array in the constructor into member variables. Use the BER
package if the contents are BER encoded.

6. Optionally, provide accessors for any member variables extracted from the
byte array.

7. Register the control with the SDK, using LDAPControl.register.

Now let’s put it all together and create our own request control and response con-
trol. The request control will be issued with a modify, add, or delete request. It contains
an e-mail address and an arbitrary string message. If the server supports the control, it
will send an e-mail message to the addressee in the control. The contents of the e-mail
message will include the message from the control and a report on what directory mod-
ification was attempted and whether or not it succeeded. The response control contains
an integer that indicates whether or not an e-mail message could be delivered, as well as
the report that was delivered (or would have been delivered) in the e-mail message.

The ASN.1 notation for the request control is as follows:

ModificationEmailRequest ::= SEQUENCE {

emailAddress OCTET STRING,

emailMessage OCTET STRING

}

The OID is 5.5.5.5.5.1 (this is a fictitious OID; a valid OID can be requested by
your organization from the IANA). The ASN.1 notation for the control and its OID
are all we need to know to write the code for the control:

568 Advanced Topics

import netscape.ldap.LDAPControl;

import netscape.ldap.ber.stream.*;

public class EmailRequestControl extends LDAPControl {

public final static String EMAILREQUEST = "5.5.5.5.5.1";

/**

* Constructs an EmailRequestControl object

* with an e-mail address and a message to send

* @param address e-mail address to send a report to

* @param message message to include in report

* @param critical true if the LDAP operation

* should be discarded for the case in which the server

* does not support this control (in other words,

* this control is critical to the LDAP operation)

* @see netscape.ldap.LDAPControl

*/

public EmailRequestControl(String address,

String message,

boolean critical) {

super(EMAILREQUEST, critical, null);

m_value = createSpecification(address, message);

}

/**

* Create a "flattened" BER encoding of the requested

* contents, and return it as a byte array

* @param address e-mail address to send a report to

* @param message message to include in report

* @return the byte array of encoded data

*/

private byte[] createSpecification(String address,

String message) {

// A sequence

BERSequence ber = new BERSequence();

// Add the two parameters as string values

ber.addElement(new BEROctetString(address));

ber.addElement(new BEROctetString(message));

// Suck out the data and return it

return flattenBER(ber);

}

}

The OID for the response control is 5.5.5.5.5.2, and the ASN.1 notation is as
follows:

Controls: An Essential Extension 569

ModificationEmailResponse ::= SEQUENCE {

resultCode INTEGER,

emailMessage OCTET STRING

}

Our response control class will then look like this:

import java.io.*;

import netscape.ldap.client.JDAPBERTagDecoder;

import netscape.ldap.LDAPControl;

import netscape.ldap.LDAPException;

import netscape.ldap.ber.stream.*;

public class EmailResponseControl extends LDAPControl {

public final static String EMAILRESPONSE = "5.5.5.5.5.2";

/**

* Constructs a new EmailResponse object

* @param oid Must be EmailRequestControl.EMAILREQUEST

* @param critical not used in the control

* @param value a BER-encoded byte array

* @exception netscape.ldap.LDAPException If oid is not

* EmailResponseControl.EMAILRESPONSE

* @see netscape.ldap.LDAPControl

*/

public EmailResponseControl(String oid, boolean critical,

byte[] value)

throws LDAPException {

super(EMAILRESPONSE, true, null);

if (!oid.equals(EMAILRESPONSE)) {

throw new LDAPException(

"oid must be " +

"EmailResponseControl." +

"EMAILRESPONSE",

LDAPException.PARAM_ERROR);

}

m_value = value;

parseResponse();

}

/**

* Gets the result code from delivering an e-mail message

* @return the result code from delivering an e-mail message

*/

570 Advanced Topics

public int getCode() {

return m_code;

}

/**

* Gets the status report delivered with the e-mail message

* @return the status report delivered with the e-mail message

*/

public String getMessage() {

return m_message;

}

/**

* Parses the BER-encoded value of m_value

*/

private void parseResponse() {

// Suck out the data and parse it

ByteArrayInputStream inStream =

new ByteArrayInputStream(getValue());

BERSequence ber = new BERSequence();

JDAPBERTagDecoder decoder = new JDAPBERTagDecoder();

int[] nRead = new int[1];

nRead[0] = 0;

try {

// A sequence

BERSequence seq =

(BERSequence)BERElement.getElement(decoder,

inStream,

nRead);

// First is the result code, then the message

m_code =

((BERInteger)seq.elementAt(0)).getValue();

BEROctetString str =

(BEROctetString)seq.elementAt(1);

m_message = new String(str.getValue(), "UTF8");

} catch(Exception x) {

m_code = -1;

m_message = null;

}

}

private int m_code = -1;

private String m_message = null;

}

Controls: An Essential Extension 571

It is not likely you will find a server that accepts or returns our new e-mail con-
trols anytime soon unless you write a server extension yourself, which is beyond the
scope of this book.

When the Data Lives Elsewhere: Managing Referrals

We have touched on referrals throughout the book. Referrals are defined in the Inter-
net Draft “draft-ietf-ldapext-namedref-00.txt” or a successor to it. An LDAP server
may return one or more referrals in the form of LDAP URLs to a client in two cases:
(1) one or more of the entries that would be referenced by an operation have the
referral object class and a ref attribute that contains one or more LDAP URLs, or
(2) the base DN of the operation falls outside of any naming context managed by the
server. The former type of referral is called a named reference; the latter is a superior
reference. The Java LDAP SDK generally treats the two types the same.

Catching and Processing Referral Exceptions

The default behavior of the SDK is to throw a referral exception if a referral is
received from the server. For search requests, the exception is thrown while the client
iterates through the search results; for all other operations the exception is delivered
on the request itself. On enumerating the results of a search, you can choose to use the
nextElement method or the next method. The former returns Object, which may be
an entry, a referral exception object, or another exception object; it does not throw
exceptions. The latter returns an entry but may throw a referral or other exception:

// Option 1. Use nextElement() and examine the object type

// returned

LDAPSearchResults res = ld.search(ENTRY,

ld.SCOPE_ONE,

"objectclass=*",

attrs,

false,

cons);

while (res.hasMoreElements()) {

Object o = res.nextElement();

if (o instanceof LDAPEntry) {

LDAPEntry entry = (LDAPEntry)o;

// Do something with this entry...

} else if (o instanceof LDAPReferralException) {

LDAPReferralException e = (LDAPReferralException)o;

LDAPUrl refUrls[] = e.getURLs();

for (int i=0; i<refUrls.length; i++) {

System.out.println(refUrls[i].getUrl());

572 Advanced Topics

// Do something with this referral...

}

} else {

LDAPException e = (LDAPException)o;

// Do something about this exception...

}

}

// Option 2. Use next() and catch the exceptions.

while (res.hasMoreElements()) {

try {

LDAPEntry theEntry = res.next();

// Do something with this entry...

} catch (LDAPReferralException e) {

LDAPUrl refUrls[] = e.getURLs();

for (int i=0; i<refUrls.length; i++) {

System.out.println(refUrls[i].getUrl());

// Do something with this referral...

}

} catch (LDAPException e) {

// Do something about this exception...

}

}

Using next, as in option 2 in the preceding example, is generally more convenient.
All other requests must be handled in a way similar to option 2:

try {

ld.delete("uid=sam, ou=people, o=Airius.com");

} catch (LDAPReferralException e) {

LDAPUrl refUrls[] = e.getURLs();

for (int i=0; i<refUrls.length; i++) {

System.out.println(refUrls[i].getUrl());

// Do something with this referral...

}

} catch (LDAPException e) {

// Do something about this exception...

}

Automatic Referrals: Anonymous or under Client Control

Most LDAP client applications prefer to have referrals handled transparently by the
SDK, outside of the main code body, rather than detecting and processing referrals
everywhere an LDAP operation is executed. There are two ways to enable automatic
referral handling:

When the Data Lives Elsewhere: Managing Referrals 573

• LDAPConnection.setReferrals(ld.REFERRALS, new Boolean(true));

• LDAPConstraints.setReferrals(true);

If the connection has the referral option set to true, or constraints are supplied
with the referral option enabled, then the client code doing LDAP operations will
never see a referral exception. The highlighted sections of the previous examples can
be eliminated. If a referral is encountered during the execution of the operation, the
SDK will make a new temporary connection to the referred-to server if necessary and
continue the operation there. The hopLimit parameter of the constraints, or the
REFERRALS_HOP_LIMIT option of the connection, determines how many links to fol-
low on a referral before giving up. The default limit is 10.

The default behavior on automatic referral following is not to authenticate (that
is, to use an anonymous connection) to the referred-to server. To supply credentials
for the referred-to connection, you must implement the LDAPRebind interface and
supply an instance of the implementation to LDAPConstraints.setRebindProc or to
LDAPConnection.setOption(LDAPConnection.REFERRALS_REBIND_PROC). The
interface specifies a single method—getRebindAuthentication—to provide creden-
tials, using a host name and port as input parameters.

It is common to supply the same credentials to the referred-to server as were
used to authenticate to the original server, as in the following example:

protected void setDefaultReferralCredentials(

LDAPConnection conn) {

final LDAPConnection m_conn = conn;

LDAPRebind rebind = new LDAPRebind() {

public LDAPRebindAuth getRebindAuthentication(

String host,

int port) {

return new LDAPRebindAuth(

m_conn.getAuthenticationDN(),

m_conn.getAuthenticationPassword());

}

};

LDAPSearchConstraints cons = conn.getSearchConstraints();

cons.setReferrals(true);

cons.setRebindProc(rebind);

conn.setSearchConstraints(cons);

}

The method extracts the credentials from an authenticated connection and stores
them for use on referrals. When LDAPRebindProc.getRebindAuthentication is called
by the SDK, an LDAPRebindAuth object is instantiated using the stored credentials.

574 Advanced Topics

You can add any additional logic required to your LDAPRebindProc implementa-
tion, including code to use different credentials based on the server host and port
instead of using fixed credentials.

The manageDsaIT Control

Suppose you have a directory entry with the referral object class and a ref attribute
containing an LDAP URL. The URL is incorrect or has changed, and you want to
modify it. But whenever you try, you are referred to the server named in the ref
attribute, which may not even exist or may not be responding to requests. To have the
server treat the entry as a normal one with no referral, supply the manageDsaIT con-
trol along with your request.

The manageDsaIT control has no content beyond the basic control elements: an
OID and an isCritical flag. No dedicated class is therefore required to encapsulate it.
Use the control as follows; the example modifies the ref attribute of an entry contain-
ing a referral.

LDAPConstraints cons =

(LDAPConstraints)ld.getConstraints().clone();

cons.setServerControls(

new LDAPControl(LDAPControl.MANAGEDSAIT, true, null));

LDAPModification mod =

new LDAPModification(LDAPModification.REPLACE,

new LDAPAttribute("ref",

"ldap://foo2.airius.com/"));

ld.modify(dn, mod, cons);

LDAPBind for Complete Client Control

LDAPRebindProc for referral credentials has a clear limitation: it can be used only to
supply simple authentication (DN and password), and not SASL or other authentica-
tion methods.

The LDAPBind interface gives you more control—in fact, it forces you to take
control—by letting you create the connection to the referred-to server yourself. It
has a single method, bind, that takes an LDAPConnection as parameter. Your imple-
mentation may extract the host name, port, and credentials from the object and do
whatever it takes to establish a connection. On failure, the method should throw an
LDAPException.

The following trivial implementation does the same thing that the earlier
LDAPRebindProc example did: it supplies the same credentials to the referred-to server
as were used with the original server, and it uses simple authentication.

When the Data Lives Elsewhere: Managing Referrals 575

LDAPBind binder = new LDAPBind() {

public void bind(LDAPConnection ld) throws LDAPException {

ld.connect(3, ld.getHost(), ld.getPort(),

ld.getAuthenticationDN(),

ld.getAuthenticationPassword());

}

};

LDAPSearchConstraints cons = ld.getSearchConstraints();

cons.setBindProc(binder);

cons.setReferrals(true);

A hypothetical SASL implementation might look like this instead:

LDAPBind binder = new LDAPBind() {

public void bind(LDAPConnection ld)

throws LDAPException {

// Set up all SASL parameters

Hashtable props = new Hashtable();

props.add("javax.security.sasl.encryption.minimum",

"40");

props.add("javax.security.sasl.encryption.maximum",

"128");

props.add("javax.security.sasl.server.authentication",

"true");

props.add("javax.security.sasl.maxbuffer", "4096");

// What we want to authenticate as

String dn = "uid=sam, ou=People, o=Airius.com";

// Create a callback object for possible use by

// the authentication process

SimpleCallbackHandler cbh = new SimpleCallbackHandler();

// Use GSSAPI as the authentication mechanism

String[] mechNames = { "GSSAPI" };

if(!ld.isConnected()) {

ld.connect(ld.getHost(), ld.getPort());

}

ld.authenticate(dn, mechNames, props, cbh);

}

};

And Now for Something Completely
Different: Extended Operationsxxxx

The section on controls earlier in this chapter showed how you can modify or extend
the behavior of the standard LDAPv3 operations by including controls in the

576 Advanced Topics

requests—provided that the server supports the particular controls. LDAPv3 goes one
step further: it allows you to execute arbitrary requests as extended operations.

An extended operation is simply a request that contains arbitrary user-defined
data and a response containing arbitrary data from the server. You could use it to turn
your LDAP server into a controller for your household appliances and define com-
mands for turning on the microwave and checking the temperature in the oven. But
that’s not really the intended use for LDAP extended operations. More likely uses for
extended operations include requesting the server to perform a backup or to begin a
synchronization session with another data source.

If you implement support for extended operations on the server, you will need to
concern yourself with security and access control. You probably don’t want just any-
one to be able to trigger an extended operation (including starting a backup or syn-
chronization). As discussed in Chapter 7, LDAP does not yet define a standard way
to set or enforce access control. With Netscape Directory Server, access rights to use
controls and extended operations are governed by entries under cn=features,cn=
config. There is one entry for each control or extended operation that may have lim-
ited access rights defined. The RDN for the entry consists of the OID. The entry for the
VLV request control looks like this by default (you can change the ACI to change the
access rights):

dn: oid=2.16.840.1.113730.3.4.9,cn=features,cn=config

objectclass: top

objectclass: directoryServerFeature

oid: 2.16.840.1.113730.3.4.9

cn: VLV Request Control

aci: (targetattr != "aci")(version 3.0; acl "VLV Request

Control"; allow(read, search, compare) userdn = "ldap:///all";)

An example of a simple but still very useful extended operation would be to
return the authentication DN of the current connection. You may question the
usefulness of such an operation when the DN is available in the connection as
LDAPConnection.getAuthenticationDN(). Although the authentication DN is avail-
able for simple authentication, it is not available for SSL client authentication. The
client may have more than one certificate, and the SSL implementation decides which
one to use by negotiating with the server. There may be no way for the client to find
out which certificate was presented. Even if the client can access the certificate, most
servers have a configurable system for mapping the subject DN in the certificate to an
entry in the directory. It is often impossible for the client to know which entry that will
be for each potential server.

The means of adding support for an extended operation to the server vary
among LDAP server vendors. For Netscape Directory Server you would write a server
plug-in, which is a shared library that is loaded when the server starts. Plug-ins can

And Now for Something Completely Different: Extended Operations 577

easily discover the DN that a connection is authenticated as and many other proper-
ties of the connection.

Execute an extended operation by constructing an LDAPExtendedOperation
object and passing it to LDAPConnection.extendedOperation. The return value is
another LDAPExtendedOperation. LDAPExtendedOperation takes an OID and a byte
array as constructor arguments. The member variables can be accessed with getID
and getValue. Our getAuthDN extended operation has no data to pass to the server,
but a DN will be returned. The code to query for the authentication DN looks like
this:

import java.util.Enumeration;

import java.io.UnsupportedEncodingException;

import netscape.ldap.*;

...

// Define the OID of our extended operation

public static final String GETIDEXTOP = "3.3.3.3.3.1";

...

// Check if the server supports the GETIDEXTOP operation

// by reading the root DSE and checking for supported

// extensions

String attrs[] = { "supportedExtension" };

LDAPEntry entry = ld.read("", attrs);

LDAPAttribute attr = entry.getAttribute(attrs[0]);

boolean doesSupport = false;

if (attr != null) {

Enumeration en = attr.getStringValues();

while((en != null) && en.hasMoreElements()) {

if (GETIDEXTOP.equals(

(String)en.nextElement())) {

doesSupport = true;

break;

}

}

}

if (doesSupport) {

// The server supports our op, so ask it for the auth DN

LDAPExtendedOperation extOp =

ld.extendedOperation(

new LDAPExtendedOperation(

GETIDEXTOP, null));

String authDN = null;

// The value must be converted from UTF8 to a Java

// String

578 Advanced Topics

try {

authDN = new String(extOp.getValue(), "UTF8");

} catch (UnsupportedEncodingException e) {

}

System.out.println("Authenticated as " + authDN);

} else {

System.out.println("Server does not support the " +

"getAuthDN extended operation");

}

Aiming for 24×7: Failover and Reconnecting

The LDAPConnection.connect methods can take more than just a host name or IP
address for the host name parameter. The parameter can be a space-delimited list of
hosts, with an optional colon and port number for each—for example:

String hosts =

"directory.knowledge.com:1050 people.catalog.com 199.254.1.2";

ld.connect(hosts, 20000);

In this example, three alternative hosts are specified. The first one also has the
port number identified; the second and third ones will use the port number passed as
the second parameter to the method: 20000. The SDK will attempt to connect to the
first host in the list. If that fails, it will try the second one, and so on.

You can tune the connection policy with LDAPConnection.setConnSetupDelay.
The default policy is LDAPConnection.NODELAY_SERIAL—that is, to try each host in
turn until one can be reached. In many cases, there will be an unacceptable delay if the
first host or hosts are inaccessible because the server is down or because there is a net-
work problem. The length of the delay may depend on your operating system and
other factors, but it will typically be at least 45 seconds (the length of the TCP/IP
socket time-out).

The other connection failover options—LDAPConnection.NODELAY_PARALLEL

and parallel connection with a selectable delay—help manage this situation. With
NODELAY_PARALLEL, the SDK will create threads that simultaneously attempt to con-
nect to each of the specified hosts. The first one to successfully establish a connection
“wins,” and the other connections are discarded. Generally this means that if at least
one LDAP server is up and running, your application won’t be delayed by any others
that are down. With the parallel option with a selectable delay, there is a delay (speci-
fied in seconds) between starting each thread; if the first thread can establish a connec-
tion within the delay interval, no attempt is made to contact other servers.

The following shows an example of each setting.

Aiming for 24×7: Failover and Reconnecting 579

ld.setConnSetupDelay(LDAPConnection.NODELAY_SERIAL);

ld.setConnSetupDelay(LDAPConnection.NODELAY_PARALLEL);

ld.setConnSetupDelay(10); // 10 seconds between threads

The setting is global to the physical connection, so it affects all clones.

Transparent Reconnection

Whether one or multiple hosts were specified, the SDK will transparently attempt to
reconnect on any LDAP operation if both of the following are true:

• The connection was established earlier.

• The connection was lost because of a network error or an LDAP server
error.

If multiple hosts were specified, any host with which a connection could not be
established is transferred to an internal reserve list. If reconnection becomes necessary,
hosts on the reserve list are probed only if there are no more hosts on the active list. If,
then, a host on the reserve list becomes accessible, it is moved back to the active list,
preventing a long delay for reconnecting each time if the first host in the originally
specified list is unavailable.

Intelligent failover and transparent reconnection are nice features for a client-
side application, but they are really significant for a server-side process that is to run
for an extended period of time. For mission-critical environments, additional LDAP
servers can be configured as replicas for hot switch-over. No special programming is
required by a client of the SDK to take advantage of the features, other than specifying
more than one host when connecting.

Controlling the Result Queue: The Connection Backlog

When an LDAPConnection object is connected to a server, it has a separate thread lis-
tening for incoming messages from the server. The messages are queued for delivery
on the basis of the sequential operation number assigned at the time of a request.
There may be multiple queues if more than one thread shares a physical connection or
if multiple searches (with a batch size of 1) have been requested. The LDAP protocol
is asynchronous, and in principle a message can be received at any time, even if no
requests have been made. When a client issues a search request that results in a large
number of entries being returned, the results may very well be delivered to the client
faster than the client processes them (by enumerating LDAPSearchResults). Memory
may be consumed to the point at which the Java Virtual Machine (JVM) crashes.

580 Advanced Topics

To limit the memory consumed in queueing incoming search results, the connec-
tion has a BackLog property that determines how many unread messages may accu-
mulate before the listener thread stops accepting additional results. The default value
is 100. The existence of the backlog mechanism is generally transparent to client oper-
ations. The client iterates through the search results, and never more than 100 results
are waiting for it in the queue at any given time. As the client reads results from the
queue, the listener thread resumes reading results from the socket and backfills the
queue. No results are lost, memory consumption is limited, and no CPU cycles are
spent on unnecessary busywork.

In some special cases a client may want to increase the backlog limit, or to decrease
it to reduce the memory consumption of the SDK while receiving large result sets. The
property is set with LDAPSearchConstraints.setMaxBacklog(int maxBackLog).
The property is global to all threads and clones sharing a physical connection.

The listener thread cannot know until after it has read a message from the
incoming socket if the next message is intended for a thread doing a massive search or
for a thread doing a modify operation that results in only a single response message
from the server. So that threads doing operations other than searches are not blocked,
the backlog limit is ignored if any concurrent operations are doing add, modify,
delete, or rename.

It is possible to create a deadlock by starting a search that returns many results
and then starting another search without enumerating the results of the first one. Such
a deadlock is best handled by avoidance: use a separate LDAPConnection with its own
physical connection for the second operation if the results of the first operation are
not to be enumerated yet. In some cases the deadlock can instead be avoided by rais-
ing the backlog limit, but at the expense of increased memory usage.

Down to the Wire: Using the Asynchronous Interface

Underneath the synchronous operation interfaces we’ve used so far in this book is
an asynchronous layer that is closer to the LDAP wire protocol. When you call
LDAPConnection.modify, the request is immediately sent off to the server and the client
then waits at a new dedicated message queue for a response. An internal listener thread
receives messages from the server asynchronously. It examines the sequential operation
number in each message and delivers the message to the corresponding queue. The wait-
ing client then wakes up, reads the message, and returns from the modify call.

The synchronous interface is generally the preferred interface for operations that
return a single result—that is, all operations except searches (of scope one-level or
subtree). For searches, setting the batch size property to 1 keeps the client from being
blocked while results are arriving. With these methods, all the low-level nitty-gritty is
handled automatically.

Down to the Wire: Using the Asynchronous Interface 581

In some cases, however, access to the low-level interfaces solves problems that
are difficult to address using the synchronous methods. The main example is multi-
plexing the result stream from multiple simultaneous searches. If you start four
searches with different connections (to the same or to different servers), you can inter-
leave the enumerating of their search results by calling next on each one in turn until
none have any more results to deliver. But if one of the searches blocks because its
server is down or is not responding quickly, then the polling loop blocks (unless you
have a separate thread or threads doing the enumeration on each result set). The asyn-
chronous interface solves this problem by providing access to the internal message
queues. A message queue can be created for one operation and assigned to another, so
messages destined for either one are delivered to the same queue.

The asynchronous interface is defined by LDAPAsynchronousConnection, which
is implemented by LDAPConnection. That means you can call any of its methods on an
LDAPConnection.

LDAPAsynchronousConnection has methods for bind, add, delete, modify,
rename, and search. The methods are the same as the synchronous ones, except
that they take an additional argument—LDAPSearchResponseListener for search
operations and LDAPResponseListener for all others—and they return an
LDAPSearchResponseListener or LDAPResponseListener rather than void. If you
pass in null for the listener argument, the connection will create a listener and return
it. If you pass in a listener, the connection will use it for messages returned for the
operation.

A listener is effectively a message queue. Calling its getResponse method blocks
until there is a response available. You can call its isResponseReceived method to
determine if there is a message available or if calling getResponse will block.

LDAPSearchResponseListener provides a getSearchResults method to return
an Enumeration object. Enumerating the results object will either block until a single
result is available (if the batch size is 1) or until all search results from all searches that
the results object manages are available (if the batch size is 0).

The basic message class is LDAPMessage. Its getType method provides access to
the type of the message, and its getControls method returns any controls returned by
the server. The possible response message types are as follows:

BIND_RESPONSE

SEARCH_RESPONSE

SEARCH_RESULT

SEARCH_RESULT_REFERENCE

MODIFY_RESPONSE

ADD_RESPONSE

582 Advanced Topics

DEL_RESPONSE

MODIFY_RDN_RESPONSE

COMPARE_RESPONSE

EXTENDED_RESPONSE

LDAPResponseListener produces instances of LDAPResponse, which extends
LDAPMessage in providing access to any error string, matched DN, referrals, and
result code that are available in the message. The client of the asynchronous interface
is responsible for checking the result code to see if the operation was successful or
what went wrong if it failed; no LDAPException is thrown unless the operation could
not even be started (for example, because the server was inaccessible).

Each object produced by an LDAPSearchResponseListener enumeration is
either an LDAPSearchResult that contains a single LDAPEntry or an instance of
LDAPSearchResultReference that contains one or more LDAP URLs. Both object
types extend LDAPMessage, so they may include controls returned by the server.

Our first sample program demonstrates that operations do not block, and it
illustrates the additional steps that must be taken to process messages when using the
asynchronous interface:

public class AsynchSearch {

public static void main(String[] args) {

String MY_FILTER = "objectclass=*";

String MY_SEARCHBASE = "o=Airius.com";

LDAPConnection ld = new LDAPConnection();

try {

ld.connect("localhost", 389);

// Asynchronous authentication

LDAPResponseListener r =

ld.bind("uid=jvedder, ou=People, o=airius.com",

"befitting",

(LDAPResponseListener)null);

// Do something else, just to show that we're not

// blocked yet

System.out.println("Started authenticating");

// Wait until it completes

LDAPResponse response = r.getResponse();

// Did the authentication succeed?

int resultCode = response.getResultCode();

if (resultCode != LDAPException.SUCCESS) {

// Do what the synchronous interface does -

// throw an exception

Down to the Wire: Using the Asynchronous Interface 583

String err =

LDAPException.errorCodeToString(

resultCode);

throw new LDAPException (

err,

resultCode,

response.getErrorMessage(),

response.getMatchedDN());

}

// Start searching. Pass null for

// LDAPSearchListener to obtain a new one.

LDAPSearchListener l =

ld.search(MY_SEARCHBASE,

ld.SCOPE_ONE,

MY_FILTER,

null,

false,

(LDAPSearchListener)null);

// Loop on results until finished

LDAPMessage msg;

while((msg = l.getResponse()) != null) {

// Next directory entry

if (msg instanceof

LDAPSearchResultReference) {

LDAPSearchResultReference ref =

(LDAPSearchResultReference)msg;

String[] urls = ref.getUrls();

// Do something with the referrals...

} else if (msg instanceof LDAPSearchResult) {

LDAPEntry entry =

((LDAPSearchResult)msg).getEntry();

// The rest of the processing is the same

// as for a synchronous search

System.out.println(entry.getDN());

} else {

// A search response

LDAPResponse res = (LDAPResponse)msg;

int status = res.getResultCode();

if (status == LDAPException.SUCCESS) {

// Nothing to do

} else {

String err =

LDAPException.errorCodeToString(

584 Advanced Topics

status);

throw new LDAPException(

err,

status,

res.getErrorMessage(),

res.getMatchedDN());

}

}

}

} catch(LDAPException e) {

System.out.println("Error: " + e.toString());

}

...

The second example uses the asynchronous interface to multiplex the result
streams from searches on three different servers:

public class MultiplexedSearch {

public static void main(String[] args) {

String MY_FILTER = "objectclass=*";

// Three hosts, three ports, three search bases

String[] HOSTS =

{ "localhost", "ldap.acme.com", "ds.airius.com" };

int[] PORTS = { 389, 24000, 32000 };

String[] BASES =

{ "o=Airius.com", "o=acme.com",

"dc=airius,dc=com" };

LDAPConnection[] lds =

new LDAPConnection[HOSTS.length];

try {

for(int i = 0; i < lds.length; i++) {

lds[i] = new LDAPConnection();

lds[i].connect(HOSTS[i], PORTS[i]);

System.out.println("Connected to " +

HOSTS[i] + ':' +

PORTS[i]);

}

// Get a response listener for one search

LDAPSearchListener listener =

lds[0].search(BASES[0],

lds[0].SCOPE_SUB,

MY_FILTER,

null,

false,

Down to the Wire: Using the Asynchronous Interface 585

(LDAPSearchListener)null);

// Share the listener

for(int i = 1; i < lds.length; i++) {

lds[i].search(BASES[i],

lds[i].SCOPE_SUB,

MY_FILTER,

null,

false,

listener);

}

// Loop on results until finished.

// This is the same as in the previous example.

The third and final example does asynchronous multiplexed searches on differ-
ent subtrees of the same server:

public class MultiSubtreeSearch {

public static void main(String[] args) {

String MY_FILTER = "objectclass=*";

String[] BASES =

{ "ou=People,o=Airius.com",

"ou=Groups,o=Airius.com",

"o=acme.com" };

LDAPConnection ld = new LDAPConnection();

try {

ld.connect("localhost", 389);

// Get a response listener for one search

LDAPSearchListener listener =

ld.search(BASES[0],

ld.SCOPE_SUB,

MY_FILTER,

null,

false,

(LDAPSearchListener)null);

// Share the listener

for(int i = 1; i < BASES.length; i++) {

// Do the parallel searches on clones

ld = (LDAPConnection)ld.clone();

ld.search(BASES[i],

ld.SCOPE_SUB,

MY_FILTER,

null,

false,

586 Advanced Topics

listener);

}

// Loop on results until finished.

// This is the same as in the previous example.

Conclusion

In this chapter we have seen how controls allow a client to access additional function-
ality that a directory may offer beyond what is specified by the various RFCs. We have
looked at the controls that are predefined in the SDK, and at how to create new con-
trols and extended operations. The chapter also has introduced the utility classes that
make it easy to access and update the directory schema, and the options available for
handling referrals. The options for failover and transparent reconnection have been
discussed, and the asynchronous operations for handling results in a nonblocking
manner have been presented.

We’ve now completed our tour of the Java LDAP API. We hope we’re leaving
you with some new ideas on what LDAP can do for you and how you can use the SDK
to accomplish your directory goals.

Conclusion 587

P A R T V

APPENDICES

A P P E N D I X A More to Learn
about LDAP

A P P E N D I X B Classes of the
LDAP SDK

A P P E N D I X C LDAP Utility
Classes on the
CD-ROM

A P P E N D I X D Common LDAP
Schema Elements

A P P E N D I X E LDAP Error Codes

Where do you go to learn more about using LDAP? Although it is not possible to
keep a printed list current, we believe you will find the following information

sources a valuable start.

Going to the Source: Internet Standards

Where to Get RFCs and Internet Drafts

RFC stands for “Request for Comments,” but the acronym has assumed a life of its
own. An RFC is no longer an invitation to discuss a standard, but rather a document
adopted for publication by the Internet Engineering Task Force (IETF). Some RFCs
define standards; others are categorized as Experimental or Informational. Most
RFCs start off as Internet Drafts before being approved as RFCs.

RFCs and Internet Drafts are available at mirrored archives around the world.
The following is a selection of sites for RFCs:

http://www.ietf.org/rfc/

http://info.internet.isi.edu:80/in-notes/rfc/files/

http://src.doc.ic.ac.uk/computing/internet/rfc/

ftp://ds.internic.net/rfc/

ftp://nisc.jvnc.net/rfc/

ftp://nis.nsf.net/internet/documents/rfc/

ftp://ftp.sesqui.net/pub/rfc/

ftp://src.doc.ic.ac.uk/computing/internet/rfc/

ftp://venera.isi.edu/in-notes/

More to Learn
about LDAP

591

A P P E N D I X A

You may access RFC 2251, for example, at the URL http://www.ietf.org/
rfc/rfc2251.txt or at http://info.internet.isi.edu:80/in-notes/rfc/files/
rfc2251.txt.

An Internet Draft name starts with “draft-.” If it is issued in the context of an
IETF working group, the next part of the name is “ietf-” and the name of the working
group (see the list below for an example); otherwise the last name of one of the
authors follows, and then some short descriptive text, a two-digit version number, and
the “.txt” extension.

Internet Drafts are required to expire after six months at most, after which time
they are withdrawn from the public mirror sites. At the time of expiration, one of
three things typically happens:

• A new draft is issued with a higher sequential number. For example, “draft-
ietf-ldapext-ldapv3-tls-04.txt” is replaced with “draft-ietf-ldapext-ldapv3-
tls-05.txt.” Often there are no changes from one version to the next. If you
search for an Internet Draft and it is not available, try searching for the
same draft with a higher number.

• The draft fades into oblivion.

• The draft is proposed to become an RFC.

The following is a selection of sites for Internet Drafts:

The IETF: ftp://ftp.ietf.org/internet-drafts/

Africa: ftp://ftp.is.co.za/internet-drafts

Canada: ftp://ftp.normos.org/ietf/internet-drafts

Italy: ftp://ftp.nic.it/internet-drafts

Pacific Rim: ftp://munnari.oz.au/internet-drafts

South America: ftp://ftp.isi.edu/internet-drafts

Sweden: ftp://ftp.nordu.net/internet-drafts

United States, West Coast: ftp://ftp.isi.edu/internet-drafts

LDAP RFCs

RFC 1823: “The C LDAP API”

RFC 1823, which defines the old LDAPv2 interface, will eventually be replaced by a
document that is currently an Internet Draft: “The C LDAP Application Program
Interface,” which defines the LDAPv3 extensions to the C API for accessing LDAP.

592 More to Learn about LDAP

RFC 2247: “Using Domains in LDAP/X.500 Distinguished Names”

This document defines an algorithm by which a name registered with the Internet
Domain Name System (DNS) can be represented as an LDAP distinguished name.

RFC 2251: “Lightweight Directory Access Protocol (v3)”

This is the main RFC for LDAPv3, which defines the protocol operations, data repre-
sentation, and data organization.

RFC 2252: “Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions”

LDAP transmits most attribute values as strings, rather than as binary structures. For
example, the number 4,000 is transmitted as “4000.” This document defines the stan-
dard attribute type representations and specifies how attribute values are compared
for each standard type during a search operation.

RFC 2253: “Lightweight Directory Access Protocol (v3): UTF-8 String Representation of
Distinguished Names”

Each entry in an LDAP directory is uniquely identified by its distinguished name
(DN), represented as a string. This document defines the syntax and structure of these
names.

RFC 2254: “The String Representation of LDAP Search Filters”

The basic LDAPv3 RFC (RFC 2251) defines a binary format for search expressions
passed from a client to a server. However, users of clients compose and submit search
requests in an easily readable and printable string format, which is defined in RFC
2254.

RFC 2255: “The LDAP URL Format”

RFC 2255 defines the URL format for expressing an LDAP search. You can enter an
LDAP URL in many browsers to perform an LDAP search.

RFC 2256: “A Summary of the X.500(96) User Schema for Use with LDAPv3”

Where possible, LDAP leverages the schema standardization work of X.500, rather
than inventing new standards for schema information. This document defines stan-
dard attributes for representing a person in an LDAP entry. These attributes are based
on the X.500 standard.

RFC 2259: “Internet X.509 Public Key Infrastructure Operational Protocols—
LDAPv2”

This document addresses requirements to provide access to public-key infrastructure
(PKI) repositories for the purposes of retrieving and managing PKI information based
on LDAP.

Going to the Source: Internet Standards 593

RFC 2307: “An Approach for Using LDAP as a Network Information Service”

This document describes an experimental mechanism for mapping entities related to
TCP/IP and the UNIX system into X.500 entries so that they may be resolved with the
LDAP protocol.

RFC 2587: “Internet X.509 Public Key Infrastructure LDAPv2 Schema”

This document defines a minimal schema to support PKIX in an LDAPv2 environ-
ment, as defined in RFC 2559.

RFC 2589: “LDAPv3 Extensions for Dynamic Directory Services”

This document defines extended operations to support dynamic (short-lived) direc-
tory data storage.

RFC 2596: “Use of Language Codes in LDAP”

This document describes how language codes as defined in RFC 1766 are carried in
LDAP and are to be interpreted by LDAP servers.

LDAP Internet Drafts

Internet Drafts are likely to disappear or acquire a new version number at least once
every six months. There are almost a hundred drafts with some relationship to LDAP,
although many simply define LDAP schema elements for use with a particular protocol
and do not constitute an extension to LDAP itself. The following are documents within
the charter of either the LDAPEXT (LDAP Extensions) or LDUP (LDAP Duplication
and Update Protocol) working group, so they are more likely than others eventually to
become a standard. The list was generated by a search at the IETF query site: http://
search.ietf.org/search/cgi-bin/BrokerQuery.pl.cgi?broker=internet-

drafts&query=ietf-ldapext%20OR%20ietf-ldup&descflag=on.

C API

“The C LDAP Application Program Interface” (draft-ietf-ldapext-ldap-c-api-04.txt)

This document defines a C language application program interface (API) to LDAP.
The document replaces the previous definition of this API, defined in RFC 1823,
updating it to include support for features found in version 3 of the LDAP protocol.
New extended operation functions were added to support LDAPv3 features such as
controls. In addition, other LDAP API changes were made to support information
hiding and thread safety.

“LDAP C API Extensions for Persistent Search” (draft-ietf-ldapext-c-api-psearch-00.txt)

This document defines extensions to the LDAP C API to support the LDAP Persistent
Search Simple Change Notification Mechanism. More specifically, this document

594 More to Learn about LDAP

defines functions to create Persistent Search controls and to parse Entry Change Noti-
fication controls.

“LDAP C API Extensions for Scrolling View Browsing of Search Results” (draft-smith-
ldap-c-api-ext-vlv-00.txt)

This document defines extensions to the LDAP C API to support the LDAP extensions
for scrolling-view browsing of search results. More specifically, this document defines
functions to create Virtual List View request controls and to parse Virtual List View
response controls.

Java API

“The Java LDAP Application Program Interface” (draft-ietf-ldapext-ldap-java-api-08.txt)

This document defines a Java language application program interface to LDAP, in the
form of a class library.

“The Java LDAP Application Program Interface Asynchronous Extension” (draft-ietf-
ldapext-ldap-java-api-asynch-ext-03.txt)

This document defines asynchronous extensions to the Java language application pro-
gram interface to LDAP defined in “draft-ietf-ldapext-ldap-java-api-08.txt.” Direc-
tory SDK for Java implements the API defined by this document and by
“draft-ietf-ldapext-ldap-java-api-08.txt.”

Access Control

“Access Control Requirements for LDAP” (draft-ietf-ldapext-acl-reqts-02.txt)

This document describes the fundamental requirements of an access control list model
for the LDAP directory service. It is intended to be a gathering place for access control
requirements needed to provide authorized access to and interoperability between
directories. The RFC 2119 terminology is used in this document.

“Access Control Model for LDAP” (draft-ietf-ldapext-acl-model-04.txt)

This document describes the access control model for the LDAP directory service. It
includes a description of the model, the LDAP controls, and the extended operations
to the LDAP protocol. A separate document defines the corresponding APIs.

Replication

“LDAP Replication Architecture” (draft-ietf-ldup-model-02.txt)

This architectural document outlines a suite of schema and protocol extensions to
LDAPv3 that enables the robust, reliable, server-to-server exchange of directory con-
tent and changes.

Going to the Source: Internet Standards 595

“LDAP V3 Replication Requirements” (draft-ietf-ldup-replica-req-01.txt)

This document discusses the fundamental requirements for replication of data that is
accessible via the LDAPv3 protocol. It is intended to be a gathering place for general
replication requirements needed to provide interoperability between informational
directories.

“LDUP Replication Information Model” (draft-ietf-ldup-infomod-00.txt)

This document describes the information model and schema elements that support
LDAP replication services that conform to “draft-ietf-ldup-model-01.txt.”

“LDUP Update Reconciliation Procedures” (draft-ietf-ldup-urp-02.txt)

This document describes the procedures used by directory servers to reconcile updates
performed by autonomously operating directory servers in a distributed, replicated
directory service. These procedures are a joint development of the IETF and ITU-T for
use in LDAP directory replication (LDUP), and the X.500 Directory Multi-master
Replication Protocol.

Authentication and Security

“Authentication Methods for LDAP” (draft-ietf-ldapext-authmeth-04.txt)

This document specifies particular combinations of security mechanisms that are
required and recommended in LDAP implementations.

“X.509 Authentication SASL Mechanism” (draft-ietf-ldapext-x509-sasl-02.txt)

This document defines a SASL authentication mechanism based on X.509 strong
authentication, providing two-way authentication. This mechanism is only for
authentication; it has no effect on the protocol encodings and is not designed to pro-
vide integrity or confidentiality services.

“Lightweight Directory Access Protocol (v3): Extension for Transport Layer Security”
(draft-ietf-ldapext-ldapv3-tls-05.txt)

This document defines the Start Transport Layer Security (TLS) operation for LDAP.
This operation provides for TLS establishment in an LDAP association and is defined
in terms of an LDAP extended request.

“An LDAP Control and Schema for Holding Operation Signatures” (draft-ietf-ldapext-
sigops-04.txt)

In many environments, clients require the ability to validate the source and integrity
of information provided by the directory. This document describes an LDAP message
control that allows for the retrieval of digitally signed information. The document
defines an LDAPv3-based mechanism for signing directory operations in order to cre-
ate a secure journal of changes that have been made to each directory entry. Both

596 More to Learn about LDAP

client- and server-based signatures are supported. An object class for subsequent
retrieval of “journal entries” is also defined. This document specifies LDAPv3 con-
trols that enable this functionality. It also defines an LDAPv3 schema that allows for
subsequent browsing of the journal information.

Controls and Extended Operations

“LDAP Extensions for Scrolling View Browsing of Search Results” (draft-ietf-ldapext-
ldapv3-vlv-03.txt)

This document describes a Virtual List View control extension for the LDAP search
operation. The control allows a client to specify that the server return a contiguous
subset of the search result set, rather than returning all results. This subset is specified
in terms of offsets into the ordered list of results, or in terms of a greater-than-or-equal
comparison value.

“LDAP Control for a Duplicate Entry Representation of Search Results” (draft-ietf-
ldapext-ldapv3-dupent-02.txt)

This document describes a Duplicate Entry Representation control extension for the
LDAP search operation. By using the control with an LDAP search, a client requests
that the server return separate entries for each value held in the specified attributes.
For instance, if a specified attribute of an entry holds multiple values, the search oper-
ation will return multiple instances of that entry, each instance holding a separate
single value in that attribute.

“LDAPv3 Triggered Search Control” (draft-ietf-ldapext-trigger-01.txt)

This document defines an LDAPv3 control to be used on the search request to allow a
client to retrieve information on changes that are made to the directory information
tree held by that server.

“LDAP Control Extension for Server Side Sorting of Search Results” (draft-ietf-ldapext-
sorting-02.txt)

This document describes two LDAPv3 control extensions for server-side sorting of
search results. These controls allow a client to specify the attribute types and match-
ing rules a server should use when returning the results to an LDAP search request.
The controls may be useful when the LDAP client has limited functionality or for
another reason cannot sort the results but still needs them sorted. Other permissible
controls on search operations are not defined in this extension.

“Persistent Search: A Simple LDAP Change Notification Mechanism” (draft-ietf-ldapext-
psearch-01.txt)

This document defines two controls that extend the LDAPv3 search operation to pro-
vide a simple mechanism by which an LDAP client can receive notification of changes

Going to the Source: Internet Standards 597

that occur in an LDAP server. The mechanism is designed to be very flexible, yet easy
for clients and servers to implement.

Other Extensions

“Families of Entries” (draft-ietf-ldapext-families-00.txt)

This document describes a model for grouping together collections of attributes into
families of entries, for directory servers that follow the X.500 and LDAP information
models. The document also describes protocol support, in the form of LDAP controls,
that allows the user to treat a family of entries either as separate entries or as a com-
bined entry when searching, retrieving, or deleting information from the DIT.

“Named Referrals in LDAP Directories” (draft-ietf-ldapext-namedref-00.txt)

This document defines a ref attribute and associated referral object class for repre-
senting generic knowledge information in LDAP directories. The attribute uses Uni-
form Resource Identifiers (URIs) to represent knowledge, enabling LDAP and
non-LDAP services alike to be referenced. The object class can be used to construct
entries in an LDAP directory containing references to other directories or services.

This document also defines procedures that directory servers should follow
when supporting these schema elements and when responding to requests for which
the directory server does not contain the requested object but may contain some
knowledge of the location of the requested object. The referral feature has been sup-
ported by Netscape and other LDAP servers for a year or two already.

X.500 Documents

Many LDAP standards are based on the standards of X.500. You may find in reading
an LDAP standards document that it references a matching rule or other protocol or
syntax element that is not defined anywhere in the document. In most cases, the
assumption is that the definitions of X.500 apply.

Unlike the LDAP standards documentation, the basic X.500 documents are not
freely available on the Internet; they must be purchased from the ITU (International
Telecommunication Union) or ISO (International Organization for Standardization).
The following list of documents was extracted from the compilation by David Chad-
wick for the book Understanding the X.500 Directory, which is mentioned in the sec-
tion on books later in this appendix.

The Directory (CCITT REC. X.500-X.521 | ISO/IEC Standard 9594:1993)

X.500: “Overview of Concepts, Models and Services”

X.501: “Models”

X.509: “Authentication Framework”

598 More to Learn about LDAP

X.511: “Abstract Service Definition”

X.518: “Procedures for Distributed Operations”

X.519: “Protocol Specifications”

X.520: “Selected Attribute Types”

X.521: “Selected Object Classes”

X.525: “Replication”

The X.5xx documents may be purchased at http://www.itu.int/itudoc/
itu-t/rec/x/x500up/.

The North American Directory Forum (NADF) Documents (April 1993)

SD-0: “NADF Standing Documents: A Brief Overview”

SD-1: “Terms of Reference”

SD-2: “Program Plan”

SD-3: “Service Description”

SD-4: “The Directory Schema”

SD-5: “An X.500 Naming Scheme for National DIT Subtrees and Its Applica-
tion for C=CA and C=US”

SD-6: “Guidelines on Naming and Subtrees”

SD-7: “Mapping the North American DIT onto Directory Management
Domains”

SD-8: “The Experimental Pilot Plan”

SD-9: “Charter, Procedure and Operations of the Central Administration for
NADF”

SD-10: “Security and Privacy: Policy and Services”

SD-11: “Directory Security: Mechanisms and Practicality”

SD-12: “Registry of ADDMD Names”

EWOS Directory Functional Standards

A/711 (A/DI1): “Directory Access,” published as ENV 41 210 (also published as
ISP 10615 parts 1 and 2)

A/712 (A/DI2): “Directory System Protocol,” published as ENV 41 212 (also
published as ISP 10615 parts 3 and 4)

Going to the Source: Internet Standards 599

A/713 (A/DI32): “Dynamic Behaviour of DSAs for Distributed Operations,”
published as ENV 41 215 (also published as ISP 10615 part 6)

A/714 (A/DI31): “Directory User Agents Distributed Operation,” published as
ENV 41 217 (also published as ISP 10615 part 5)

Q/511 (F/DI11): “Common Directory Use,” published as ENV 41 512 (also
published as ISP 10616; see also ISO/IEC PDISP)

Q/512 (F/DI2): “Directory Data Definitions—Directory Use by MHS”

Q/513 (F/DI3): “Directory Data Definitions—FTAM Use of the Directory” (to
be published as ISP 11190)

ETG XXX: “Introduction to Directory Profiles” (final draft)

ETG 017: “Error Handling in the OSI Directory” (final draft, May 1992)

ETG XXX: “Security Architecture for the Directory” (fifth draft in 1992)

Joint ISO Standards and CCITT Recommendations

ISO/IEC 8824:1988 | CCITT X.208: “Specification of Abstract Syntax Notation
One (ASN.1)”

ISO/IEC 8824-2 DIS (1993) | CCITT X.208-2: “Abstract Syntax Notation One
(ASN.1): Information Object Specification”

ISO/IEC 8825-1 | CCITT X.209-1: “Part 1: Basic Encoding Rules (BER)”

ISO/IEC 8825-3 DIS (1993) | CCITT X.209-3: “Part 3: Distinguished Encoding
Rules”

ISO/IEC 9072-1 | CCITT X.219: “Remote Operations—Model, Notation and
Service Definition”

ISO 8649:1988 | CCITT X.217: “Service Definition for the Association Control
Service Element”

Other ISO Documents

ISO/IEC JTC 1/SC21 N6063: “Use of Object Identifiers to Access Directory
Information” (May 1991)

ISO 3166:1988: “Codes for the Representation of Names of Countries”

ISO IS 10162/3: “Documentation Search and Retrieve Service Definition/Proto-
col Specification”

ISO 6523:1984: “Data Interchange—Structure for the Identification of Organi-
sations”

600 More to Learn about LDAP

ISO/IEC 10646-1:1993: “(E) Information Technology—Universal Multiple-
Octet Coded Character Set (UCS)”

ISO/IEC PDISP 10616: “International Standardised Profile FDI11—Directory
Data Definitions—Common Directory Use” (February 1993)

Books about LDAP

LDAP Concepts and Deployment

Understanding and Deploying LDAP Directory Services, by Timothy A. Howes, Mark C.
Smith, and Gordon S. Good (MacMillan Network Architecture and Development Series,
1999)

This comprehensive tutorial provides the reader with a thorough treatment of LDAP
directory services. Minimal knowledge of general networking and administration is
assumed, making the material accessible to intermediate and advanced readers. It is
the first book to explore the design and deployment of directory services, and it con-
tains real-world examples of directory deployments illustrating effective design princi-
ples along with practical insight and advice from world-renowned experts.

LDAP Programming

LDAP: Programming Directory-Enabled Applications with Lightweight Directory
Access Protocol, by Tim Howes and Mark Smith (MacMillan Technology Series, 1997)

This book provides a solid introduction to LDAP, including its history and architec-
ture, and then covers LDAP API programming via C and C++ in clear, discrete exam-
ples that range from simple searching to filtering, reading, and updating LDAP
directories. More advanced topics include asynchronous LDAP programming with
threads, as well as building a command-line LDAP search utility. It does not cover
LDAPv3.

Implementing LDAP, by Mark Wilcox (Wrox Press, 1999)

This book contains a brief overview of LDAP concepts and deployment issues, but it
focuses on illustrating the options available for programming to LDAP. It devotes a
chapter each to Netscape’s C LDAP SDK, the PerLDAP SDK, Netscape Directory SDK
for Java, Sun’s JNDI (Java Naming and Directory Interface), and Microsoft’s ADSI.

X.500

X.500 is not LDAP, but sometimes there are unexplained references to X.500 con-
cepts in LDAP literature.

Books about LDAP 601

Understanding the X.500 Directory, by David Chadwick (Chapman & Hall, 1994)

This book is out of print, but some of it is available in an online version at http://
www.salford.ac.uk/its024/Version.Web/Contents.htm.

The Directory Standard and Its Application, by Doug Steedman (Technology Appraisals,
1993)

LDAP Information on the Internet

LDAP FAQs and Presentations

http://people.netscape.com/bjm/whyLDAP.html

A System Administrator’s View of LDAP. A system administrator’s perspective on
what you’ll need to reap the benefits of using LDAP: a good understanding of what
LDAP can and cannot accomplish, some familiarity with LDAP basics, and ideas on
how to make the transition to LDAP.

http://www.stanford.edu/%7Ehodges/talks/EMA98DirectoryServicesRollout/

Steve_Kille/index.htm

Steve Kille’s (of Isode) talk “Why Do I Need a Directory When I Could Use a Rela-
tional Database?”

http://www3.innosoft.com/ldapworld/ldapfaq.html

Mark Wahl’s (of Innosoft) LDAP FAQ.

http://www.mjwilcox.com/ldap/ldapfaq.htm

Mark Wilcox’s LDAP FAQ.

LDAP Client SDKs

http://www.mozilla.org/directory/

Open Source for C, Java, and Perl programming, including the source for the SDK dis-
cussed in this book. Also some tools for LDAP administration.

http://developer.netscape.com/tech/directory/downloads.html

Precompiled SDKs for C, Java, and Perl. They are in principle the same as what is at
mozilla.org, but generally the source code is available at mozilla.org before there
is a release at Netscape.

http://java.sun.com/products/jndi/

Sun’s JNDI.

602 More to Learn about LDAP

LDAP Server Vendors

http://www.software.ibm.com/enetwork/technology/directory/

IBM SecureWay Directory.

http://www.innosoft.com/

Innosoft Directory Services.

http://developer.netscape.com/docs/manuals/

index.html?content=directory.html

Netscape Directory Server Documentation.

http://www.openldap.org/

OpenLDAP. Open-source LDAP software, including servers, clients, and SDKs.

http://www.rage.net/ldap/

A project to integrate LDAP into Linux.

http://www.oracle.com/html/oidds.html

Oracle Internet Directory data sheet.

http://www.novell.com/products/nds/ldap.html

Novell LDAP Services for NDS.

Add-On Products for LDAP Directories

http://www.oblix.com/solutions/csa/datasheets/data_corpdir.html

Oblix Corporate Directory. Automates the Web-based provisioning of information
and services that employees need, such as computers, phones, facilities, network ser-
vices, help desk, e-mail, security privileges, and corporate directories.

http://www.intracus.com/

Intracus. Provides an application framework for White Pages and Yellow Pages appli-
cations called Directory Browser. Intracus Directory Wizard can be used to build or
customize directory applications.

http://www.padl.com/

PADL Software. Flagship product is ypldapd, a gateway between LDAP and the Net-
work Information System (NIS).

http://www.pspl.co.in/PSEnList

Persistent Systems. PS Enlist is a product that allows queries and updates to be made
to an LDAP directory via an ODBC connection, providing access to the directory for
applications that can communicate only through a relational interface.

LDAP Information on the Internet 603

Collections of LDAP Documents and Links

http://www.ldapnews.org/

LDAP news, reviews, tips, conference information, and links.

http://www.kingsmountain.com/ldapRoadmap.shtml

An LDAP Roadmap & FAQ.

http://www.critical-angle.com/ldapworld/index.html

Innosoft’s LDAP World.

http://dir.yahoo.com/Computers_and_Internet/

Communications_and_Networking/Protocols/

LDAP__Lightweight_Directory_Access_Protocol_/

Yahoo’s section for LDAP.

http://www.ldapcentral.com/resources.html

LDAP Central. Resource for directory services and LDAP; sponsored by Oblix.

http://webopedia.internet.com/TERM/L/LDAP.html

Webopedia. Online encyclopedia.

http://www.hklc.com/ldapschema/

A catalog of standard LDAP schema elements.

http://www.alvestrand.no/objectid/

Information on how OIDs are assigned and used, and a dictionary for looking up or
browsing all known OIDs.

X.500

http://www.nic.surfnet.nl/surfnet/projects/x500/introducing/

An introduction to and overview of X.500.

http://ds.internic.net/pub/src/x500/schema/

X.500 schema definitions.

Miscellaneous

ftp://ftp.rsa.com/pub/pkcs/ascii/layman.asc

A layperson’s guide to ASN.1 and BER.

604 More to Learn about LDAP

Newsgroups Where LDAP Is Spoken

snews://secnews.mcom.com:563/netscape.dev.directory

This newsgroup is used mainly for discussions about programming for Netscape
Directory Server, but other topics do come up.

snews://secnews.mcom.com:563/netscape.server.directory

This newsgroup is mostly for discussions about deploying and managing Netscape
Directory Server.

news://news.mozilla.org/netscape.public.mozilla.directory

The mozilla.org site hosts the open-source LDAP SDKs for C, Java, and Perl. In real-
ity, this newsgroup discusses mostly PerLDAP issues.

news://devforums.novell.com/novell.devsup.njcl

Novell LDAP newsgroup, mainly for JNDI.

news://msnews.microsoft.com/

microsoft.public.win2000.beta.directory_srv

Microsoft forum for Active Directory in Windows 2000, focusing mostly on configu-
ration and deployment.

LDAP in Your Inbox

ldap@umich.edu

This mailing list originally was for discussion of the University of Michigan LDAP
server project, but it has become a forum for general LDAP discussions. Subscribe by
sending a message to ldap-request@umich.edu that reads “subscribe ldap.”

ietf-ldapext@netscape.com

This is the forum for the LDAP Extensions working group of the IETF. Subscribe by
sending a message to ietf-ldapext-request@netscape.com that reads “subscribe.”

ietf-ldup@imc.org

The ietf-ldup mailing list is for discussions of the LDUP (LDAP Duplication and
Update Protocol) on standards for replication between LDAP servers. Subscribe by
sending a message to ietf-ldup-request@imc.org that reads “subscribe.”

LDAP in Your Inbox 605

LDAP Servers at Your Disposal

The following are some of the LDAP servers that can be searched over the Internet
with anonymous access. You can generally search them with an LDAP URL of the
form ldap://ldap.four11.com//???sn=apocalypse. In other words, they generally
have a suffix of "", and from there you can do a subtree search (the default in an
LDAP URL) for all attributes (also the default). Some servers, such as Four11, seem to
automatically append an asterisk to your search expression, so the search becomes a
“begins with” search rather than an “equals” search.

In general, public servers have huge databases, and you will need to specify an
extensive search filter to receive a reasonable number of search results. If the search
would return more than the maximum allowed by the server (typically 50 or 100), the
server may return the first 50 or so results or it may return no results at all. Some
servers support searching by cn and others by sn, givenName, uid, or mail, or a com-
bination of these attributes.

BigFoot: ldap://ldap.bigfoot.com//

Four11: ldap://ldap.four11.com//

Gottfried Hamm KommunikationsSysteme: ldap://ldap.ghks.de//

InfoSpace: ldap://ldap.infospace.com//

Netcenter membership directory: ldap://memberdir.netscape.com//ou=
member_directory,o=netcenter.com

New York University: ldap://ldap.nyu.edu/o=New%20York%20University,
st=New%20York,c=US

Stanford University: ldap://directory.stanford.edu//dc=stanford,dc=edu

SwitchBoard: ldap://ldap.switchboard.com//c=us

University of Georgia: ldap://directory.uga.edu//o=uga,c=us

University of Houston—Clearlake: ldap://bigfoot.cl.uh.edu//

University of Massachusetts: ldap://home.oit.umass.edu//o=
University%20of%20Massachusetts,c=U

WhoWhere: ldap://ldap.whowhere.com//

606 More to Learn about LDAP

All the major public classes are presented here, with inheritance and referential
relationships indicated. A few of the internal classes are included to illustrate how

the SDK manages connections.

The netscape.ldap Package

LDAPConnection and Connection Management

LDAPConnection implements the LDAPv3 interface (which extends LDAPv2 and
defines all the standard LDAP operations as synchronous methods) and the
LDAPAsynchronousConnection interface (which defines asynchronous methods
for the LDAP operations).
An LDAPConnThread manages a physical connection to an LDAP server on behalf of
one or more LDAPConnection objects. All data to or from the server passes through
the socket owned by the LDAPConnnThread.

An LDAPConnSetupMgr object is responsible for creating a socket for
LDAPConnThread and for creating a new socket if the server goes down or if network
problems cause the connection to be lost. The LDAPConnSetupMgr may have a list of
servers for transparent failover.

By default, the LDAPConnSetupMgr uses java.net.Socket to create a connec-
tion. However, it can use an optional LDAPSocketFactory implementation to create a
socket. The SDK does not contain classes for Secure Sockets Layer (SSL) communica-
tions, but it does include two implementations of LDAPSocketFactory to allow use of
third-party SSL implementations. LDAPSSLSocketFactory supports the use of third-
party packages that can supply an object that extends java.net.Socket, and
LDAPSSLSocketWrapFactory supports packages that provide a Socket equivalent that
does not extend java.net.Socket.

Classes of the
LDAP SDK

607

A P P E N D I X B

608 Classes of the LDAP SDK

«Interface»
LDAPAsynchronousConnection

«Interface»
LDAPv2

«Interface»
LDAPv3

«Interface»
LDAPSSLSocketFactoryExt

(from ldap)

LDAPSSLSocketWrapFactory
(from ldap)

LDAPSSLSocketFactory
(from ldap)

«Interface»
LDAPSocketFactory

LDAPConnSetupMgr

0..1

LDAPConnection

LDAPConnThread
0..1

0..1

0..1

1..* 1..1

FIGURE B-1. LDAPConnection and connection management.

The netscape.ldap Package 609

LDAPConnection()
LDAPConnection(factory : LDAPSocketFactory)
finalize() : void
setCache(cache : LDAPCache) : void
getCache() : LDAPCache
getProperty(name : String) : Object
setProperty(name : String, val : Object) : void
setProtocolVersion(version : int) : void
getHost() : String
getPort() : int
getAuthenticationDN() : String
getAuthenticationPassword() : String
getConnSetupDelay() : int
setConnSetupDelay(delay : int) : void
getSocketFactory() : LDAPSocketFactory
setSocketFactory(factory : LDAPSocketFactory) : void
isConnected() : boolean
isAuthenticated() : boolean
connect(host : String, port : int) : void
connect(host : String, port : int, dn : String, passwd : String) : void
connect(host : String, port : int, dn : String, passwd : String, cons :

LDAPConstraints) : void
connect(host : String, port : int, dn : String, passwd : String, cons :

LDAPConstraints, doAuthenticate : boolean) : void
connect(version : int, host : String, port : int, dn : String, passwd :

String) : void
connect(version : int, host : String, port : int, dn : String, passwd :

String, cons : LDAPConstraints) : void
connect() : void
getNewThread(connMgr : LDAPConnSetupMgr, cache : LDAPCache) : LDAPConnThread
authenticateSSLConnection() : void
abandon(searchResults : LDAPSearchResults) : void
authenticate(dn : String, passwd : String) : void
authenticate(dn : String, passwd : String, cons : LDAPConstraints) : void
authenticate(version : int, dn : String, passwd : String) : void
authenticate(version : int, dn : String, passwd : String, cons :

LDAPConstraints) : void
authenticate(dn : String, props : Hashtable, cbh : CallbackHandler) : void
authenticate(dn : String, mechanisms : String[], props : Hashtable, cbh :

CallbackHandler) : void
authenticate(dn : String, mechanism : String, packageName : String,

props : Hashtable, cbh : CallbackHandler) : void
authenticate(dn : String, mechanisms : String[], packageName : String,

props : Hashtable, cbh : CallbackHandler) : void
bind(dn : String, passwd : String) : void
bind(dn : String, passwd : String, cons : LDAPConstraints) : void
bind(version : int, dn : String, passwd : String) : void
bind(version : int, dn : String, passwd : String, cons : LDAPConstraints) : void
bind(dn : String, props : Hashtable, cbh : CallbackHandler) : void
bind(dn : String, mechanisms : String[], props : Hashtable, cbh :

CallbackHandler) : void
internalBind(version : int, rebind : boolean, cons : LDAPConstraints) : void

LDAPConnection

FIGURE B-2. LDAPConnection.

updateThreadConnTable() : void
sendRequest(oper : JDAPProtocolOp, myListener : LDAPMessageQueue, cons :

LDAPConstraints) : void
internalBind(cons : LDAPConstraints) : void
reconnect() : void
disconnect() : void
deleteThreadConnEntry() : void
deregisterConnection() : void
read(DN : String) : LDAPEntry
read(DN : String, cons : LDAPSearchConstraints) : LDAPEntry
read(DN : String, attrs[] : String) : LDAPEntry
read(DN : String, attrs[] : String, cons : LDAPSearchConstraints) : LDAPEntry
read(toGet : LDAPUrl) : LDAPEntry
search(toGet : LDAPUrl) : LDAPSearchResults
search(toGet : LDAPUrl, cons : LDAPSearchConstraints) : LDAPSearchResults
search(base : String, scope : int, filter : String, attrs : String[], attrsOnly :

boolean) : LDAPSearchResults
search(base : String, scope : int, filter : String, attrs : String[], attrsOnly :

boolean, cons : LDAPSearchConstraints) : LDAPSearchResults
checkSearchMsg(value : LDAPSearchResults, msg : LDAPMessage, cons :

LDAPSearchConstraints, dn : String, scope : int, filter : String, attrs[] :
String, attrsOnly : boolean) : void

compare(DN : String, attr : LDAPAttribute) : boolean
compare(DN : String, attr : LDAPAttribute, cons : LDAPConstraints) : boolean
add(entry : LDAPEntry) : void
add(entry : LDAPEntry, cons : LDAPConstraints) : void
extendedOperation(op : LDAPExtendedOperation) : LDAPExtendedOperation
extendedOperation(op : LDAPExtendedOperation, cons : LDAPConstraints) :

LDAPExtendedOperation
modify(DN : String, mod : LDAPModification) : void
modify(DN : String, mod : LDAPModification, cons : LDAPConstraints) : void
modify(DN : String, mods : LDAPModificationSet) : void
modify(DN : String, mods : LDAPModificationSet, cons : LDAPConstraints) : void
modify(DN : String, mods : LDAPModification[]) : void
modify(DN : String, mods : LDAPModification[], cons : LDAPConstraints) : void
delete(DN : String) : void
delete(DN : String, cons : LDAPConstraints) : void
rename(DN : String, newRDN : String, deleteOldRDN : boolean) : void
rename(DN : String, newRDN : String, deleteOldRDN : boolean, cons :

LDAPConstraints) : void
rename(dn : String, newRDN : String, newParentDN : String, deleteOldRDN :

boolean) : void
rename(DN : String, newRDN : String, newParentDN : String, deleteOldRDN :

boolean, cons : LDAPConstraints) : void
add(entry : LDAPEntry, listener : LDAPResponseListener) : LDAPResponseListener
add(entry : LDAPEntry, listener : LDAPResponseListener, cons : LDAPConstraints) :

LDAPResponseListener
bind(dn : String, passwd : String, listener : LDAPResponseListener) :

LDAPResponseListener
bind(dn : String, passwd : String, listener : LDAPResponseListener, cons :

LDAPConstraints) : LDAPResponseListener
bind(dn : String, mechanisms : String[], packageName : String, props : Properties,

cbh : CallbackHandler, listener : LDAPResponseListener) : LDAPResponseListener

610 Classes of the LDAP SDK

FIGURE B-2. LDAPConnection (continued).

bind(dn : String, mechanisms : String[], packageName : String, props :
Properties, cbh : CallbackHandler, listener : LDAPResponseListener, cons :
LDAPConstraints) : LDAPResponseListener

delete(dn : String, listener : LDAPResponseListener) : LDAPResponseListener
delete(dn : String, listener : LDAPResponseListener, cons : LDAPConstraints) :

LDAPResponseListener

The netscape.ldap Package 611

LDAPResponseListener
modify(dn : String, mod : LDAPModification, listener : LDAPResponseListener) :

LDAPResponseListener
modify(dn : String, mod : LDAPModification, listener : LDAPResponseListener,

cons : LDAPConstraints) : LDAPResponseListener
modify(dn : String, mods : LDAPModificationSet, listener : LDAPResponseListener) :

LDAPResponseListener
modify(dn : String, mods : LDAPModificationSet, listener : LDAPResponseListener,

cons : LDAPConstraints) : LDAPResponseListener
rename(dn : String, newRdn : String, deleteOldRdn : boolean, listener :

LDAPResponseListener) : LDAPResponseListener
rename(dn : String, newRdn : String, deleteOldRdn : boolean, listener :

LDAPResponseListener, cons : LDAPConstraints) : LDAPResponseListener
search(base : String, scope : int, filter : String, attrs[] : String, typesOnly :

boolean, listener : LDAPSearchListener) : LDAPSearchListener
search(base : String, scope : int, filter : String, attrs[] : String, typesOnly :

boolean, listener : LDAPSearchListener, cons : LDAPSearchConstraints) :
LDAPSearchListener

compare(dn : String, attr : LDAPAttribute, listener : LDAPResponseListener) :
LDAPResponseListener

compare(dn : String, attr : LDAPAttribute, listener : LDAPResponseListener, cons :
LDAPConstraints) : LDAPResponseListener

abandon(id : int) : void
abandon(searchlistener : LDAPSearchListener) : void
getOption(option : int) : Object
getOption(option : int, cons : LDAPSearchConstraints) : Object
setOption(option : int, value : Object) : void
setOption(option : int, value : Object, cons : LDAPSearchConstraints) : void
getResponseControls() : LDAPControl[]
getConstraints() : LDAPConstraints
getSearchConstraints() : LDAPSearchConstraints
setConstraints(cons : LDAPConstraints) : void
setSearchConstraints(cons : LDAPSearchConstraints) : void
getInputStream() : InputStream
setInputStream(is : InputStream) : void
getOutputStream() : OutputStream
setOutputStream(os : OutputStream) : void
getResponseListener() : LDAPResponseListener
getSearchListener(cons : LDAPSearchConstraints) : LDAPSearchListener
releaseResponseListener(l : LDAPResponseListener) : void
releaseSearchListener(l : LDAPSearchListener) : void
checkMsg(m : LDAPMessage) : void
setResponseControls(current : LDAPConnThread, con : LDAPResponseControl) : void
prepareReferral(u : LDAPUrl, cons : LDAPConstraints) : LDAPConnection
createReferralConnection(e : LDAPReferralException, cons : LDAPConstraints) :

LDAPConnection

FIGURE B-2. LDAPConnection (continued).

performReferrals(e : LDAPReferralException, cons : LDAPConstraints, ops : int,
dn : String, scope : int, filter : String, types[] : String, attrsOnly :
boolean, mods[] : LDAPModification, entry : LDAPEntry, attr : LDAPAttribute,
results : Vector) : void

performReferrals(connection : LDAPConnection, cons : LDAPConstraints, ops : int,
dn : String, scope : int, filter : String, types[] : String, attrsOnly :
boolean, mods[] : LDAPModification, entry : LDAPEntry, attr : LDAPAttribute,
results : Vector) : void

performExtendedReferrals(e : LDAPReferralException, cons : LDAPConstraints, op :
LDAPExtendedOperation) : LDAPExtendedOperation

clone() : Object
resultRetrieved() : void
checkCommunicator() : boolean
isNetscape() : boolean
printDebug(msg : String) : void
main(args : String[]) : void

612 Classes of the LDAP SDK

performReferrals(e : LDAPReferralException, cons : LDAPConstraints, ops : int,
dn : String, scope : int, filter : String, types[] : String, attrsOnly :
boolean, mods[] : LDAPModification, entry : LDAPEntry, attr : LDAPAttribute,
results : Vector) : void

performReferrals(connection : LDAPConnection, cons : LDAPConstraints, ops : int,
dn : String, scope : int, filter : String, types[] : String, attrsOnly :
boolean, mods[] : LDAPModification, entry : LDAPEntry, attr : LDAPAttribute,
results : Vector) : void

performExtendedReferrals(e : LDAPReferralException, cons : LDAPConstraints, op :
LDAPExtendedOperation) : LDAPExtendedOperation

clone() : Object
resultRetrieved() : void
checkCommunicator() : boolean
isNetscape() : boolean
printDebug(msg : String) : void
main(args : String[]) : void

FIGURE B-2. LDAPConnection (continued).

LDAPExtendedResponse

LDAPResponse LDAPSearchResultReferenceLDAPSearchResult

LDAPControlLDAPMessage

LDAPEntry

LDAPAttributeSet

LDAPAttribute

LDAPModification

LDAPModificationSet

0..*

0..*

0..1 0..*

0..* 1..1

FIGURE B-3. LDAP message and data types.

Basic LDAP Message and Data Encapsulation

An LDAPSearchResult contains a single LDAPEntry, which consists of a DN and
a set of attributes. The LDAPAttributeSet may contain zero or more attributes, each
of which contains zero or more values.

An LDAPModification consists of an LDAPAttribute and a specifier for the type
of modification. An LDAPModificationSet contains zero or more LDAPModification
objects.

The netscape.ldap Package 613

LDAPMessage(msgid : int, op : JDAPProtocolOp)
LDAPMessage(msgid : int, op : JDAPProtocolOp, controls[] : LDAPControl)
parseMessage(element : BERElement) : LDAPMessage
getId() : int
getType() : int
getProtocolOp() : JDAPProtocolOp
getControls() : LDAPControl[]
write(s : OutputStream) : void
toString() : String

LDAPMessage
(from ldap)

FIGURE B-4. LDAPMessage.

LDAPResponse(msgid : int, rsp : JDAPProtocolOp, controls[] :
LDAPControl)

getErrorMessage() : String
getMatchedDN() : String
getReferrals() : String[]
getResultCode() : int

LDAPResponse
(from ldap)

FIGURE B-5. LDAPResponse.

614 Classes of the LDAP SDK

LDAPSearchResult(msgid : int, rsp : JDAPSearchResponse, controls :
LDAPControl[])

getEntry() : LDAPEntry

LDAPSearchResult
(from ldap)

FIGURE B-7. LDAPSearchResult.

LDAPSearchResultReference(msgid : int, resRef :
JDAPSearchResultReference, controls : LDAPControl[])

getUrls() : String[]

LDAPSearchResultReference
(from ldap)

FIGURE B-8. LDAPSearchResultReference.

LDAPExtendedResponse(msgid : int, rsp : JDAPExtendedResponse,
controls[] : LDAPControl)

getOID() : String
getValue() : byte[]

LDAPExtendedResponse
(from ldap)

FIGURE B-6. LDAPExtendedResponse.

The netscape.ldap Package 615

LDAPEntry()
LDAPEntry(distinguishedName : String)
LDAPEntry(distinguishedName : String, attrs : LDAPAttributeSet)
getDN() : String
setDN(name : String) : void
getAttributeSet() : LDAPAttributeSet
getAttributeSet(subtype : String) : LDAPAttributeSet
getAttribute(attrName : String) : LDAPAttribute
getAttribute(attrName : String, lang : String) : LDAPAttribute
toString() : String

LDAPEntry
(from ldap)

FIGURE B-9. LDAPEntry.

LDAPAttributeSet()
LDAPAttributeSet(attrs : LDAPAttribute[])
clone() : Object
getAttributes() : Enumeration
getSubset(subtype : String) : LDAPAttributeSet
getAttribute(attrName : String) : LDAPAttribute
prepareHashtable() : void
getAttribute(attrName : String, lang : String) : LDAPAttribute
elementAt(index : int) : LDAPAttribute
removeElementAt(index : int) : void
size() : int
add(attr : LDAPAttribute) : void
remove(name : String) : void
toString() : String

LDAPAttributeSet
(from ldap)

FIGURE B-10. LDAPAttributeSet.

616 Classes of the LDAP SDK

LDAPAttribute(attr : LDAPAttribute)
LDAPAttribute(attrName : String)
LDAPAttribute(attrName : String, attrValue : byte[])
LDAPAttribute(attrName : String, attrValue : String)
LDAPAttribute(attrName : String, attrValues : String[])
LDAPAttribute(element : BERElement)
size() : int
getStringValues() : Enumeration
getStringValueArray() : String[]
getByteValues() : Enumeration
getByteValueArray() : byte[][]
getName() : String
getSubtypes(attrName : String) : String[]
getSubtypes() : String[]
getLangSubtype() : String
getBaseName(attrName : String) : String
getBaseName() : String
hasSubtype(subtype : String) : boolean
hasSubtypes(subtypes : String[]) : boolean
addValue(attrValue : String) : void
setValues(attrValues : String[]) : void
addValue(attrValue : byte[]) : void
setValues(attrValues : Object[]) : void
removeValue(attrValue : String) : void
removeValue(attrValue : byte[]) : void
equalValue(a : byte[], b : byte[]) : boolean
getBERElement() : BERElement
getParamString() : String
toString() : String

LDAPAttribute
(from ldap)

FIGURE B-11. LDAPAttribute.

The netscape.ldap Package 617

LDAPModificationSet()
size() : int
elementAt(index : int) : LDAPModification
removeElementAt(index : int) : void
add(op : int, attr : LDAPAttribute) : void
remove(name : String) : void
toString() : String

LDAPModificationSet
(from ldap)

FIGURE B-12. LDAPModificationSet.

LDAPModification(op : int, attr : LDAPAttribute)
getOp() : int
getAttribute() : LDAPAttribute
getBERElement() : BERElement
toString() : String

LDAPModification
(from ldap)

FIGURE B-13. LDAPModification.

618 Classes of the LDAP SDK

LDAPResponseListener(asynchOp : boolean)
getResponse() : LDAPResponse
merge(listener2 : LDAPSearchListener) : void
isResponseReceived() : boolean
getIDs() : int[]

LDAPResponseListener
(from ldap)

LDAPMessageQueue
(from ldap)

LDAPSearchListener(asynchOp : boolean, cons : LDAPSearchConstraints)
completeSearchOperation() : LDAPResponse
getResponse() : LDAPMessage
merge(listener2 : LDAPSearchListener) : void
getIDs() : int[]
getConstraints() : LDAPSearchConstraints
setKey(key : Long) : void
getKey() : Long

LDAPSearchListener
(from ldap)

LDAPSearchResults()
LDAPSearchResults(conn : LDAPConnection, cons : LDAPSearchConstraints,

base : String, scope : int, filter : String, attrs : String[],
attrsOnly : boolean)

LDAPSearchResults(v : Vector)
LDAPSearchResults(v : Vector, conn : LDAPConnection, cons :

LDAPSearchConstraints, base : String, scope : int, filter : String,
attrs : String[], attrsOnly : boolean)

add(msg : LDAPMessage) : void
add(e : LDAPException) : void
associate(l : LDAPSearchListener) : void
associatePersistentSearch(l : LDAPSearchListener) : void
addReferralEntries(res : LDAPSearchResults) : void
closeOnCompletion(toClose : LDAPConnection) : void
quicksort(toSort : LDAPEntry[], compare : LDAPEntryComparator, low :

int, high : int) : void
setResponseControls(controls : LDAPControl[]) : void
getResponseControls() : LDAPControl[]
sort(compare : LDAPEntryComparator) : void
next() : LDAPEntry
nextElement() : Object
nextReferralElement() : Object
hasMoreElements() : boolean
getCount() : int
getID() : int
abandon() : void
fetchResult() : void

LDAPSearchResults
(from ldap)

1..1

FIGURE B-14. Message queueing and delivery.

Handling Messages from the Server

Every operation (except for unbind) is associated with a message queue for responses
from the server. For searches, the queue is implemented by LDAPSearchListener rather
than LDAPResponseListener. For synchronous searches, the client of the SDK receives
an LDAPSearchResults object as the return value of a search; the client does not inter-
act directly with the listener object. However, when the client iterates through the
results, the LDAPSearchResults object obtains results as needed from the listener.

Authentication and Reauthentication

The netscape.ldap Package 619

LDAPSaslBind(dn : String, mechanisms : String[], packageName : String,
props : Hashtable, cbh : CallbackHandler)

bind(ldc : LDAPConnection) : void
getClient(ldc : LDAPConnection, packageName : String) : Object
bind(ldc : LDAPConnection, rebind : boolean) : void
isExternalMechanism(name : String) : boolean
checkForSASLBindCompletion(resultCode : int) : boolean
saslBind(ldc : LDAPConnection, mechanismName : String, credentials :

byte[]) : JDAPBindResponse

LDAPSaslBind
(from ldap)

getRebindAuthentication(host : String, port :
int) : LDAPRebindAuth

«Interface»
LDAPRebind
(from ldap)

bind(conn : LDAPConnection) : void

«Interface»
LDAPBind

(from ldap)

LDAPRebindAuth(dn : String, password : String)
getDN() : String
getPassword() : String

LDAPRebindAuth
(from ldap)

FIGURE B-15. Classes for authentication and reauthentication.

You can provide an implementation of either an LDAPRebind or an LDAPBind
interface to provide credentials when the SDK is automatically following referrals.
The LDAPRebind implementation must produce an LDAPRebindAuth object when a
referral is to be followed. An LDAPBind implementation must perform whatever
authentication is required for the referral itself. LDAPSaslBind is an internal imple-
mentation in the SDK for SASL authentication.

Exceptions

620 Classes of the LDAP SDK

LDAPException()
LDAPException(message : String)
LDAPException(message : String, resultCode : int)
LDAPException(message : String, resultCode : int, serverErrorMessage :

String)
LDAPException(message : String, resultCode : int, serverErrorMessage :

String, matchedDN : String)
getLDAPResultCode() : int
getLDAPErrorMessage() : String
getMatchedDN() : String
toString() : String
errorCodeToString() : String
errorCodeToString(l : Locale) : String
errorCodeToString(code : int) : String
errorCodeToString(code : int, locale : Locale) : String

LDAPException
(from ldap)

LDAPInterruptedException(message : String)
toString() : String

LDAPInterruptedException
(from ldap)

LDAPReferralException()
LDAPReferralException(message : String)
LDAPReferralException(message : String, resultCode : int,

serverErrorMessage : String)
LDAPReferralException(message : String, resultCode : int,

referrals[] : String)
getURLs() : LDAPUrl[]
constructsURL(referrals[] : String) : LDAPUrl[]
extractReferrals(error : String) : String[]

LDAPReferralException
(from ldap)

FIGURE B-16. Exceptions.

LDAPReferralException is thrown when a referral is encountered during
an LDAP operation if automatic referral following has not been enabled.
LDAPInterruptedException is thrown if a thread is interrupted during execution
of an operation. For all other errors, the base LDAPException is thrown.

Controls

The netscape.ldap Package 621

LDAPControl()
LDAPControl(id : String, critical : boolean, vals[] : byte)
getID() : String
isCritical() : boolean
getValue() : byte[]
getBERElement() : BERElement
register(oid : String, controlClass : Class) : void
lookupControlClass(oid : String) : Class
createControl(oid : String, critical : boolean, value : byte[]) :

LDAPControl
parseControl(el : BERElement) : LDAPControl
newInstance(data : byte[]) : LDAPControl[]
clone() : Object
flattenBER(ber : BERSequence) : byte[]
toString() : String

LDAPControl
(from ldap)

LDAPVirtualListResponse
(from controls)

LDAPVirtualListControl
(from controls)

LDAPSortControl
(from controls)

LDAPProxiedAuthControl
(from controls)

LDAPEntryChangeControl
(from controls)

LDAPPasswordExpiredControl
(from controls)

LDAPPasswordExpiringControl
(from controls)

LDAPStringControl
(from controls)

LDAPPersistSearchControl
(from controls)

FIGURE B-17. Controls.

The base class LDAPControl can instantiate any control that has registered itself,
including all the response controls in the SDK. The individual derived classes are
responsible for encoding and decoding their individual contents, beyond the OID and
criticality flag, which are common to all controls. Derived classes in the SDK belong
to the netscape.ldap.controls package.

622 Classes of the LDAP SDK

LDAPPasswordExpiredControl(oid : String, critical : boolean, value :
byte[])

parseResponse(controls : LDAPControl[]) : String
getMessage() : String

LDAPPasswordExpiredControl
(from controls)

LDAPStringControl()
LDAPStringControl(oid : String, critical : boolean, value : byte[])
parseResponse(controls : LDAPControl[], type : String) : String

LDAPStringControl
(from controls)

LDAPPasswordExpiringControl(oid : String, critical : boolean, value :
byte[])

getSecondsToExpiration() : int
getMessage() : String
parseResponse(controls : LDAPControl[]) : String

LDAPPasswordExpiringControl
(from controls)

FIGURE B-18. Password expiration controls.

A base class LDAPStringControl provides support for managing a simple
String as control contents. The two password expiration controls extend
LDAPStringControl to interpret the stored value.

The netscape.ldap Package 623

LDAPEntryChangeControl()
LDAPEntryChangeControl(oid : String, critical : boolean, value :

byte[])
setChangeNumber(num : int) : void
setChangeType(num : int) : void
setPreviousDN(dn : String) : void
getChangeNumber() : int
getChangeType() : int
getPreviousDN() : String
toString() : String

LDAPEntryChangeControl
(from controls)

FIGURE B-19. LDAPEntryChangeControl.

LDAPPersistSearchControl()
LDAPPersistSearchControl(changeTypes : int, changesOnly : boolean,

returnControls : boolean, isCritical : boolean)
getChangeTypes() : int
getChangesOnly() : boolean
getReturnControls() : boolean
setChangeTypes(types : int) : void
setChangesOnly(changesOnly : boolean) : void
setReturnControls(returnControls : boolean) : void
parseResponse(c : byte[]) : LDAPEntryChangeControl
parseResponse(controls : LDAPControl[]) : LDAPEntryChangeControl
createPersistSearchSpecification(changeTypes : int, changesOnly :

boolean, returnECs : boolean) : byte[]
toString() : String
typesToString(changeTypes : int) : String

LDAPPersistSearchControl
(from controls)

FIGURE B-20. LDAPPersistSearchControl.

624 Classes of the LDAP SDK

LDAPProxiedAuthControl(dn : String, critical : boolean)
createSpecification(dn : String) : byte[]

LDAPProxiedAuthControl
(from controls)

FIGURE B-21. LDAPProxiedAuthControl.

LDAPSortControl(oid : String, critical : boolean, value : byte[])
getFailedAttribute() : String
getResultCode() : int
LDAPSortControl(key : LDAPSortKey, critical : boolean)
LDAPSortControl(keys : LDAPSortKey[], critical : boolean)
parseResponse(controls : LDAPControl[], results : int[]) : String
createSortSpecification(keys : LDAPSortKey[]) : byte[]

LDAPSortControl
(from controls)

FIGURE B-22. LDAPSortControl.

The netscape.ldap Package 625

LDAPVirtualListControl()
LDAPVirtualListControl(jumpTo : String, beforeCount : int, afterCount :

int)
LDAPVirtualListControl(jumpTo : String, beforeCount : int, afterCount :

int, context : String)
LDAPVirtualListControl(startIndex : int, beforeCount : int,

afterCount : int, contentCount : int)
LDAPVirtualListControl(startIndex : int, beforeCount : int,

afterCount : int, contentCount : int, context : String)
setRange(startIndex : int, beforeCount : int, afterCount : int) : void
setRange(jumpTo : String, beforeCount : int, afterCount : int) : void
getIndex() : int
getListSize() : int
setListSize(listSize : int) : void
getBeforeCount() : int
getAfterCount() : int
getContext() : String
setContext(context : String) : void
createPageSpecification(subFilter : String, beforeCount : int,

afterCount : int) : byte[]
createPageSpecification(listIndex : int, listSize : int, beforeCount :

int, afterCount : int) : byte[]

LDAPVirtualListControl
(from controls)

FIGURE B-23. LDAPVirtualListControl.

LDAPVirtualListResponse()
LDAPVirtualListResponse(oid : String, critical : boolean, value :

byte[])
LDAPVirtualListResponse(value : byte[])
getContentCount() : int
getFirstPosition() : int
getResultCode() : int
getContext() : String
parseResponse() : void
parseResponse(controls : LDAPControl[]) : LDAPVirtualListResponse

LDAPVirtualListResponse
(from controls)

FIGURE B-24. LDAPVirtualListResponse.

An LDAPConnThread object may have a cache, which uses a timer to expire any
cached results.

Caching

626 Classes of the LDAP SDK

LDAPCache(ttl : long, size : long)
LDAPCache(ttl : long, size : long, dns : String[])
getSize() : long
getTimeToLive() : long
getBaseDNs() : String[]
flushEntries(dn : String, scope : int) : boolean
timerExpired(e : TimerEvent) : void
getAvailableSize() : long
getTotalOperations() : long
getNumMisses() : long
getNumHits() : long
getNumFlushes() : long
createKey(host : String, port : int, baseDN : String, filter : String,

scope : int, attrs : String[], bindDN : String, cons :
LDAPConstraints) : Long

getEntry(key : Long) : Object
flushEntries() : void
addEntry(key : Long, value : Object) : void
size() : int
cleanup() : void
init(ttl : long, size : long) : void
appendString(str : String) : String
appendString(num : int) : String
appendString(str : String[]) : String
sortStrings(str : String[]) : void
getCRC32(barray : byte[]) : long

LDAPCache
(from ldap)

«Interface»
TimeEventListener Timer

LDAPConnThread

TimerRunnable TimerEvent

1..1

0..1

1..10..1

FIGURE B-25. Caching.

The netscape.ldap Package 627

Client-Side Sorting

LDAPCompareAttrNames(attribute : String)
LDAPCompareAttrNames(attribute : String, ascendingFlag : boolean)
LDAPCompareAttrNames(attributes : String[])
LDAPCompareAttrNames(attributes : String[], ascendingFlags : boolean[])
getLocale() : Locale
setLocale(locale : Locale) : void
isGreater(greater : LDAPEntry, less : LDAPEntry) : boolean
attrGreater(greater : LDAPEntry, less : LDAPEntry, attrPos : int) :

boolean

LDAPCompareAttrNames
(from ldap)

isGreater(greater : LDAPEntry, less : LDAPEntry) : boolean

«Interface»
LDAPEntryComparator

(from ldap)

FIGURE B-26. Entry comparison interface and implementation.

LDAPSortKey(keyDescription : String)
LDAPSortKey(key : String, reverse : boolean)
LDAPSortKey(key : String, reverse : boolean, matchRule : String)
getKey() : String
getReverse() : boolean
getMatchRule() : String

LDAPSortKey
(from ldap)

FIGURE B-27. LDAPSortKey.

LDAPSchema fetches the schema from a server and then allows a client to access
the various elements of the schema.

628 Classes of the LDAP SDK

LDAPSchema()
addObjectClass(objectSchema : LDAPObjectClassSchema) : void
addAttribute(attrSchema : LDAPAttributeSchema) : void
addMatchingRule(matchSchema : LDAPMatchingRuleSchema) : void
getObjectClasses() : Enumeration
getAttributes() : Enumeration
getMatchingRules() : Enumeration
getObjectClass(name : String) : LDAPObjectClassSchema
getAttribute(name : String) : LDAPAttributeSchema
getMatchingRule(name : String) : LDAPMatchingRuleSchema
getObjectClassNames() : Enumeration
getAttributeNames() : Enumeration
getMatchingRuleNames() : Enumeration
fetchSchema(ld : LDAPConnection, dn : String) : void
fetchSchema(ld : LDAPConnection) : void
isAttributeSyntaxStandardsCompliant(ld : LDAPConnection) : boolean
toString() : String
getSchemaDN(ld : LDAPConnection, dn : String) : String
readSchema(ld : LDAPConnection, dn : String, attrs : String[]) :

LDAPEntry
readSchema(ld : LDAPConnection, dn : String) : LDAPEntry
printEnum(en : Enumeration) : void
main(args : String[]) : void

LDAPSchema
(from ldap)

FIGURE B-28. LDAPSchema.

Schema Representation

The netscape.ldap Package 629

LDAPSchemaElement()
LDAPSchemaElement(name : String, oid : String, description : String)
getName() : String
getOID() : String
getDescription() : String
update(ld : LDAPConnection, op : int, attr : LDAPAttribute, dn :

String) : void
update(ld : LDAPConnection, op : int, attrs : LDAPAttribute[], dn :

String) : void
update(ld : LDAPConnection, op : int, name : String, dn :

String) : void
add(ld : LDAPConnection, dn : String) : void
add(ld : LDAPConnection) : void
modify(ld : LDAPConnection, newValue : LDAPSchemaElement, dn :

String) : void
modify(ld : LDAPConnection, newValue : LDAPSchemaElement) : void
remove(ld : LDAPConnection, dn : String) : void
remove(ld : LDAPConnection) : void
isObsolete() : boolean
parseValue(raw : String) : void
getValue() : String
getValue(quotingBug : boolean) : String
getValuePrefix() : String
getOptionalValues(names : String[]) : String
getCustomValues() : String
getValue(key : String, doQuote : boolean) : String
setQualifier(name : String, value : String) : void
setQualifier(name : String, values : String[]) : void
getQualifier(name : String) : String[]
getQualifierNames() : Enumeration
getQualifierString(ignore : String[]) : String

LDAPSchemaElement
(from ldap)

FIGURE B-29. LDAPSchemaElement.

Most schema element functionality is provided by the abstract base class
LDAPSchemaElement.

630 Classes of the LDAP SDK

LDAPMatchingRuleSchema
(from ldap)

LDAPMatchingRuleSchema(name : String, oid : String, description :
String, attributes : String[], syntax : int)

LDAPMatchingRuleSchema(name : String, oid : String, description :
String, attributes : String[], syntaxString : String)

LDAPMatchingRuleSchema(name : String, oid : String, description :
String, attributes : String[], syntaxString : String, aliases :
String[])

LDAPMatchingRuleSchema(raw : String, use : String)
getAttributes() : String[]
getSyntax() : int
getSyntaxString() : String
getValue(quotingBug : boolean) : String
getValue() : String
getUseValue() : String
update(ld : LDAPConnection, op : int, name : String, dn : String) :

void
toString() : String

LDAPAttributeSchema
(from ldap)

LDAPAttributeSchema()
LDAPAttributeSchema(name : String, oid : String, description : String,

syntax : int, single : boolean)
LDAPAttributeSchema(name : String, oid : String, description : String,

syntaxString : String, single : boolean)
LDAPAttributeSchema(name : String, oid : String, description : String,

syntaxString : String, single : boolean, superior : String,
aliases : String[])

LDAPAttributeSchema(raw : String)
isSingleValued() : boolean
getSuperior() : String
getSyntax() : int
getSyntaxString() : String
getValue(quotingBug : boolean) : String
toString() : String

LDAPSchemaElement
(from ldap)

LDAPSyntaxSchemaElement
(from ldap)

1..1

1..1

FIGURE B-30. Attribute and matching-rule schema elements.

Much of the common functionality of LDAPAttributeSchema and
LDAPMatchingRuleSchema is encapsulated in the common base class
LDAPSchemaElement. Both concrete classes delegate responsibility for syntax
management, including conversions between OID and a string representation,
to an LDAPSyntaxElement object.

The netscape.ldap Package 631

Miscellaneous Utility Classes

LDAPObjectClassSchema(name : String, oid : String, superior : String,
description : String, required : String[], optional : String[])

LDAPObjectClassSchema(name : String, oid : String, superiors :
String[], description : String, required : String[], optional :
String[], type : int)

LDAPObjectClassSchema(raw : String)
getSuperior() : String
getSuperiors() : String[]
getRequiredAttributes() : Enumeration
getOptionalAttributes() : Enumeration
getType() : int
getValue(quotingBug : boolean) : String
toString() : String
vectorToList(vals : Vector) : String

LDAPObjectClassSchema
(from ldap)

LDAPSchemaElement

FIGURE B-31. LDAPObjectClassSchema.

explodeDN(dn : String, noTypes : boolean) : String[]
explodeRDN(rdn : String, noTypes : boolean) : String[]
escapeRDN(rdn : String) : String
unEscapeRDN(rdn : String) : String
isEscape(c : char) : boolean

LDAPDN
(from ldap)

FIGURE B-32. LDAPDN.

LDAPDN provides a few helpful static methods for processing Strings that repre-
sent DNs. It uses the DN class of netscape.ldap.util internally.

632 Classes of the LDAP SDK

LDAPUrl(url : String)
LDAPUrl(host : String, port : int, DN : String)
LDAPUrl(host : String, port : int, DN : String, attributes[] : String,

scope : int, filter : String)
LDAPUrl(host : String, port : int, DN : String, attributes :

Enumeration, scope : int, filter : String)
initialize(host : String, port : int, DN : String, attributes :

Enumeration, scope : int, filter : String) : void
getHost() : String
getPort() : int
getDN() : String
getAttributes() : Enumeration
getAttributeArray() : String[]
getScope() : int
getScope(str : String) : int
getFilter() : String
getUrl() : String
isFilter(str : String) : boolean
isAttribute(str : String) : boolean
readNextConstruct(parser : StringTokenizer) : String
hexValue(hexChar : char) : int
hexChar(hexValue : int) : char
decode(URLEncoded : String) : String
encode(toEncode : String) : String

LDAPUrl
(from ldap)

FIGURE B-33. LDAPUrl.

LDAPUrl can express search parameters. The LDAPConnection.search method
can take an LDAPUrl as parameter.

The netscape.ldap.util Package

DNs and RDNs

The Netscape ldap.util Package 633

DN()
DN(dn : String)
addRDNToFront(rdn : RDN) : void
addRDNToBack(rdn : RDN) : void
addRDN(rdn : RDN) : void
setDNType(type : int) : void
getDNType() : int
countRDNs() : int
getRDNs() : Vector
explodeDN(noTypes : boolean) : String[]
isRFC() : boolean
toRFCString() : String
toOSFString() : String
toString() : String
isDN(dn : String) : boolean
equals(dn : DN) : boolean
getParent() : DN
contains(dn : DN) : boolean
isDescendantOf(dn : DN) : boolean
isRFC(dn : String) : boolean
appendRDN(buffer : StringBuffer) : boolean

DN
(from util)

FIGURE B-34. DN.

RDN(rdn : String)
explodeRDN(noType : boolean) : String[]
getType() : String
getValue() : String
toString() : String
isRDN(rdn : String) : boolean
equals(rdn : RDN) : boolean

RDN
(from util)

FIGURE B-35. RDN.

634 Classes of the LDAP SDK

getType() : int
getControls() : LDAPControl[]
setControls(controls : LDAPControl[]) : void
toString() : String

«Interface»
LDIFContent

(from util)

LDIFBaseContent()
getControls() : LDAPControl[]
setControls(controls : LDAPControl[]) : void
getControlString() : String

LDIFBaseContent
(from util)

LDIFRecord(dn : String, content : LDIFContent)
getDN() : String
getContent() : LDIFContent
getControls() : LDAPControl[]
toString() : String

LDIFRecord
(from util)

LDIFAttributeContent()
getType() : int
addElement(attr : LDAPAttribute) : void
getAttributes() : LDAPAttribute[]
toString() : String

LDIFAttributeContent
(from util)

LDIFModifyContent()
getType() : int
addElement(mod : LDAPModification) : void
getModifications() : LDAPModification[]
toString() : String

LDIFModifyContent
(from util)

LDIFModDNContent()
getType() : int
setRDN(rdn : String) : void
getRDN() : String
setNewParent(parent : String) : void
getNewParent() : String
setDeleteOldRDN(bool : boolean) : void
getDeleteOldRDN() : boolean
toString() : String

LDIFModDNContent
(from util)

LDIFDeleteContent()
getType() : int
toString() : String

LDIFDeleteContent
(from util)

LDIFAddContent(attrs[] : LDAPAttribute)
getType() : int
getAttributes() : LDAPAttribute[]
toString() : String

LDIFAddContent
(from util)

1..1

FIGURE B-36. LDIF record classes.

LDIF Reader Classes

An LDIFRecord object contains a reference to an LDIFBaseContent object,
which represents one of the types of LDAP operations that can be expressed in an
LDIF record.

The Netscape ldap.util Package 635

translate(in : ByteBuf, out : ByteBuf) : void
eof(out : ByteBuf) : void

MimeEncoder
(from util)

decode_token(out : ByteBuf) : void
decode_final_token(out : ByteBuf) : void
translate(in : ByteBuf, out : ByteBuf) : void
eof(out : ByteBuf) : void

MimeBase64Decoder
(from util)

LDIF()
LDIF(file : String)
LDIF(ds : DataInputStream)
nextRecord() : LDIFRecord
parse_ldif_record(d : LineReader) : LDIFRecord
parse_ldif_content(d : LineReader) : LDIFContent
getDecodedBytes(line : String) : byte[]
getFileContent(url : String) : byte[]
parse_add_spec(d : LineReader) : LDIFAddContent
parse_delete_spec(d : LineReader) : LDIFDeleteContent
parse_mod_spec(d : LineReader) : LDIFModifyContent
parse_moddn_spec(d : LineReader) : LDIFModDNContent
parse_control_spec(line : String) : LDAPControl
isPrintable(b : byte[]) : boolean
breakString(pw : PrintWriter, value : String, max : int) : void
getVersion() : int
toString() : String
toPrintableString(b : byte[]) : String
main(args : String[]) : void

LDIF
(from util)

1..1

FIGURE B-37. LDIF stream reader and base64 handlers.

An LDIF object opens and manages a stream of input from an LDIF file. It instan-
tiates an LDIFRecord object for each record found, and decodes values that are
encoded in base 64 with a MimeBase64Decoder object.

636 Classes of the LDAP SDK

ByteBuf()
ByteBuf(length : int)
ByteBuf(str : String)
ByteBuf(bytes[] : byte, offset : int, length : int)
length() : int
capacity() : int
ensureCapacity(minimumCapacity : int) : void
setLength(newLength : int) : void
byteAt(index : int) : byte
getBytes(srcBegin : int, srcEnd : int, dst[] : byte, dstBegin :

int) : void
setByteAt(index : int, b : byte) : void
append(obj : Object) : ByteBuf
append(str : String) : ByteBuf
append(str[] : byte) : ByteBuf
append(str[] : byte, offset : int, len : int) : ByteBuf
append(buf : ByteBuf) : ByteBuf
append(b : boolean) : ByteBuf
append(b : byte) : ByteBuf
append(i : int) : ByteBuf
append(l : long) : ByteBuf
append(f : float) : ByteBuf
append(d : double) : ByteBuf
toString() : String
toBytes() : byte[]
read(file : InputStream, max_bytes : int) : int
read(file : RandomAccessFile, max_bytes : int) : int
write(out : OutputStream) : void
write(out : RandomAccessFile) : void

ByteBuf
(from util)

FIGURE B-38. ByteBuf

Connection Pool

The Netscape ldap.util Package 637

ConnectionPool(min : int, max : int, host : String, port : int,
authdn : String, authpw : String)

ConnectionPool(min : int, max : int, host : String, port : int)
ConnectionPool(host : String, port : int)
ConnectionPool(min : int, max : int, ldc : LDAPConnection)
ConnectionPool(min : int, max : int, host : String, port : int,

authdn : String, authpw : String, ldc : LDAPConnection)
destroy() : void
getConnection() : LDAPConnection
getConnFromPool() : LDAPConnection
close(ld : LDAPConnection) : void
printPool() : void
disconnect(ldapconnObject : LDAPConnectionObject) : void
createPool() : void
addConnection() : int
setUpPool(size : int) : void
find(con : LDAPConnection) : int
setDebug(mode : boolean) : void
getDebug() : boolean
debug(s : String) : void
debug(s : String, severe : boolean) : void

ConnectionPool
(from util)

FIGURE B-39. ConnectionPool.

A connection pool queues requests for a connection and distributes connections
for a particular host and port from an internal set.

Chapters 10 and 12 use a number of utility classes that are provided on the CD-
ROM in the source code directories for those chapters. This appendix contains a

brief summary of these classes and methods.

The table Package

public abstract interface ISortableTableModel
extends javax.swing.table.TableModel

Interface for table model that allows sorting.

sortByColumn

public void sortByColumn(int column, boolean isAscent)

Sorts the table by the given column, in ascending or descending order.

Parameters:

column: the index of the column on which to sort

isAscent: if true, sort in ascending order

getIndexes

public int[] getIndexes()

Gets the index values by which the table is sorted.

LDAP Utility
Classes on the
CD-ROM

639

A P P E N D I X C

Returns:

the array of index values that translates between logical and physical row order

public class SortableTableModel
extends javax.swing.table.DefaultTableModel
implements ISortableTableModel

Table model for a table with sortable columns. It implements TableModel methods
going through an index, for quick sorting without moving the data. The method sig-
natures are the same as for DefaultTableModel.

SortableTableModel

public SortableTableModel()

getValueAt

public java.lang.Object getValueAt(int row, int col)

setValueAt

public void setValueAt(java.lang.Object value, int row, int col)

sortByColumn

public void sortByColumn(int column, boolean isAscent)

getIndexes

public int[] getIndexes()

fireTableStructureChanged

public void fireTableStructureChanged()

640 LDAP Utility Classes on the CD-ROM

public class SortHeaderListener
extends
java.awt.event.MouseAdapter

Class to handle mouse clicks on table headers and cause sorting. The methods are
those of MouseListener.

SortHeaderListener

public SortHeaderListener(javax.swing.table.JTableHeader header,

SortButtonRenderer _renderer)

mousePressed

public void mousePressed(java.awt.event.MouseEvent e)

mouseReleased

public void mouseReleased(java.awt.event.MouseEvent e)

public class SortButtonRenderer
extends javax.swing.JButton
implements javax.swing.table.TableCellRenderer

Class to render a column header as a button with an up or down arrow icon.

NONE

public static final int NONE

DOWN

public static final int DOWN

UP

public static final int UP

The table Package 641

SortButtonRenderer

public SortButtonRenderer()

getTableCellRendererComponent

public java.awt.Component

getTableCellRendererComponent(javax.swing.JTable table,

java.lang.Object value,

boolean isSelected,

boolean hasFocus,

int row,

int column)

Implements TableCellRenderer.getTableCellRendererComponent, returning
a JLabel indicating if this is the primary sort column and if it is sorted in ascending or
descending order.

setPressedColumn

public void setPressedColumn(int col)

Sets the visual effect to be pressed or not.

setSelectedColumn

public void setSelectedColumn(int col)

Sets the visual effect to be selected or not.

getState

public int getState(int col)

Returns NONE, DOWN, or UP, depending on the state of the column.

642 LDAP Utility Classes on the CD-ROM

public class BlankIcon extends java.lang.Object
implements javax.swing.Icon

Icon to use when no arrow is to be visible.

BlankIcon

public BlankIcon()

BlankIcon

public BlankIcon(java.awt.Color color, int size)

paintIcon

public void paintIcon(java.awt.Component c, java.awt.Graphics g,

int x, int y)

getIconWidth

public int getIconWidth()

getIconHeight

public int getIconHeight()

public class BevelArrowIcon extends java.lang.Object
implements javax.swing.Icon

Class to render a three-dimensional triangle or arrow pointing up or down.

UP

public static final int UP

DOWN

public static final int DOWN

The table Package 643

BevelArrowIcon

public BevelArrowIcon(int direction, boolean isRaisedView,

boolean isCODEssedView)

BevelArrowIcon

public BevelArrowIcon(java.awt.Color edge1, java.awt.Color edge2,

java.awt.Color fill, int size, int direction)

paintIcon

public void paintIcon(java.awt.Component c, java.awt.Graphics g,

int x, int y)

getIconWidth

public int getIconWidth()

getIconHeight

public int getIconHeight()

public class TableSorter extends java.lang.Object

Class to sort table data by one column, with a variety of data types.

TableSorter

public TableSorter(ISortableTableModel model)

sort

public void sort(int column, boolean isAscent)

compare

public int compare(int column, int row1, int row2)

644 LDAP Utility Classes on the CD-ROM

compare

public int compare(java.lang.Number o1, java.lang.Number o2)

compare

public int compare(java.util.Date o1, java.util.Date o2)

compare

public int compare(java.lang.Boolean o1, java.lang.Boolean o2)

The util Package

public class DateUtil extends java.lang.Object

Class to convert LDAP date format into a format more usable in a Java application.

DateUtil

public DateUtil()

getDateTime

public static java.util.Date getDateTime(java.lang.String dbDate)

Converts the date in LDAP format into a java.util.Date object.

formatDateTime

public static java.lang.String formatDateTime(java.lang.String dbDate)

Converts the date in LDAP format into a localized String.

public class Debug extends java.lang.Object
implements java.io.Serializable

Class to control the output of debugging statements. There are two levels of control
for the output. First, the output can be prevented outright by disabling the trace flag.
Second, the amount of output can be regulated by the trace level. By convention, we

The util Package 645

use ten levels, designated from 0 to 9, where 0 implies least output and 9 implies full
output. By default, the trace level is set to 5, and the trace level designated to debug-
ging statements without a specific level is also 5. These statements will be printed
when the trace flag is enabled. To reduce the amount of output, debugging statements
should be specified with this default level in mind. Note that all statements designated
at the current trace level or below will be printed.

setTrace

public static void setTrace(boolean fTrace)

Enables or disables debugging.

Parameters:

fTrace: boolean value

getTrace

public static boolean getTrace()

Determines whether debugging is enabled or disabled.

Returns:

boolean value

isEnabled

public static boolean isEnabled()

setTraceLevel

public static void setTraceLevel(int iTraceLevel)

Sets the verbosity level of the debugging output.

Parameters:

iTraceLevel: integer value indicating which debugging statements to display

646 LDAP Utility Classes on the CD-ROM

getTraceLevel

public static int getTraceLevel()

Retrieves the verbosity level of the debugging output.

Returns:

integer value indicating which debugging statements to display

println

public static void println(java.lang.String s)

Default debug statement that indicates a trace level of 5.

Parameters:

s: debug statement

print

public static void print(java.lang.String s)

Default debug statement that indicates a trace level of 5.

Parameters:

s: debug statement

println

public static void println(int level, java.lang.String s)

Debug statement specifying at which level to print.

Parameters:

level: trace level

s: debug statement

The util Package 647

print

public static void print(int level, java.lang.String s)

Debug statement specifying at which level to print.

Parameters:

level: trace level

s: debug statement

println

public static void println(int s)

Default debug statement that indicates a trace level of 5.

Parameters:

s: debug statement

print

public static void print(int s)

Default debug statement that indicates a trace level of 5.

Parameters:

s: debug statement

println

public static void println(int level, int s)

Debug statement specifying at which level to print.

Parameters:

level: trace level

s: debug statement

648 LDAP Utility Classes on the CD-ROM

print

public static void print(int level, int s)

Debug statement specifying at which level to print.

Parameters:

level: trace level

s: debug statement

public class DirUtil extends java.lang.Object

Utility class to prepare an LDAP connection, using a nonsecure or an SSL session
(using SSLava from Phaos).

setDefaultReferralCredentials

public static void

setDefaultReferralCredentials(netscape.ldap.LDAPConnection ldc)

Sets up the LDAPConnection to automatically follow referrals, using the same creden-
tials as for the current connection.

Parameters:

ldc: an open connection to a directory server

makeLDAPConnection

public static netscape.ldap.LDAPConnection

makeLDAPConnection(boolean useSSL)

Create an unconnected LDAPConnection object, with or without an SSL socket factory.

Parameters:

useSSL: if true, use an SSL socket factory

Returns:

an LDAPConnection

The util Package 649

getLDAPConnection

public static netscape.ldap.LDAPConnection

getLDAPConnection(java.lang.String host,

int port,

java.lang.String authDN,

java.lang.String authPassword,

boolean useSSL)

throws netscape.ldap.LDAPException

Establishes an LDAPConnection with default automatic referrals.

Parameters:

host: host to connect to

port: port on host to connect to

authDN: distinguished name for authentication

authPassword: password for authentication

useSSL: if true, establish an SSL connection

Returns:

an LDAPConnection

Throws:

netscape.ldap.LDAPException on any failure

getLDAPConnection

public static netscape.ldap.LDAPConnection

getLDAPConnection(java.lang.String host,

int port,

java.lang.String authDN,

java.lang.String authPassword)

throws netscape.ldap.LDAPException

Establishes an LDAPConnection with default automatic referrals.

650 LDAP Utility Classes on the CD-ROM

Parameters:

host: host to connect to

port: port on host to connect to

authDN: distinguished name for authentication

authPassword: password for authentication

Returns:

an LDAPConnection

Throws:

netscape.ldap.LDAPException on any failure

public class ImageUtil extends java.lang.Object

Class to load an image file from a remote source or from the CLASSPATH.

getPackageImage

public static javax.swing.ImageIcon

getPackageImage(java.lang.String name)

public class ResourceSet extends java.lang.Object
implements java.io.Serializable

Class to implement a simple API over the java.util.PropertyResourceBundle
class, and the underlying .properties files.

ResourceSet

public ResourceSet(java.lang.String bundle, java.util.Locale

locale)

Initializes a resource set.

Parameters:

bundle: a fully qualified property file name, within the current CLASSPATH
and excluding the .properties suffix

The util Package 651

locale: the locale to be used to initialize the resource set

ResourceSet

public ResourceSet(java.lang.String bundle)

A version of the ResourceSet constructor that uses the default locale.

Parameters:

bundle: a fully qualified property file, within the current CLASSPATH and
excluding the .properties suffix

getString

public java.lang.String getString(java.lang.String prefix,

java.lang.String name)

Returns the value of a named resource in the ResourceSet. The resource name is
composed of prefix, followed by a hyphen, followed by name. This version assumes
that no parameter substitution is necessary in the value.

Parameters:

prefix: the name prefix of the resource

name: the name suffix of the resource

getString

public java.lang.String getString(java.lang.String prefix,

java.lang.String name,

java.lang.String[] args)

Returns the value of a named resource in the ResourceSet. The resource name is
composed of prefix, followed by a hyphen, followed by name. If the value is found
and it contains parameter substitution marks (%num, where num is an integer), these
marks will be replaced by the corresponding member of the args array (args[num]).
If num is invalid with respect to args, then the substitution will not take place.

652 LDAP Utility Classes on the CD-ROM

Parameters:

prefix: the name prefix of the resource

name: the name suffix of the resource

args: values for parameter substitution

getString

public java.lang.String getString(java.lang.String CODEfix,

java.lang.String name,

java.lang.String arg)

This version of getString differs only in that it takes a single String argument,
rather than an array, as a convenience.

Parameters:

prefix: the name prefix of the resource

name: the name suffix of the resource

arg: a single value for parameter substitution

substitute

protected java.lang.String substitute(java.lang.String s,

java.lang.String[] args)

getBundle

protected java.util.PropertyResourceBundle

getBundle(java.lang.String bundle, java.util.Locale locale)

Implements the PropertyResourceBundle loader.

Parameters:

bundle: the bundle identifier

locale: the locale

The util Package 653

public class SimpleReferral extends java.lang.Object
implements netscape.ldap.LDAPrebind, java.io.Serializable

Class for having an LDAPConnection follow referrals by reusing the same authentica-
tion DN and password.

SimpleReferral

public SimpleReferral(java.lang.String dn, java.lang.String password)

Just saves the credentials on construction.
Parameters:

dn: the authentication DN

getRebindAuthentication

password: the authentication password

public netscape.ldap.LDACODEbindAuth

getRebindAuthentication(java.lang.String host, int port)

Always returns the same credentials for referrals.

Parameters:

host: the referred-to host (ignored)

port: the referred-to port (ignored)

Returns:

credentials for referral following

public class SortUtil extends java.lang.Object

Class to sort an array of Strings in place, using simple ASCII comparison, or true
Unicode collation.

bubbleSort

public static void bubbleSort(java.lang.String[] str, boolean

isAscii)

654 LDAP Utility Classes on the CD-ROM

Sorts the array of Strings using bubble sort.

Parameters:

str: the array of Strings being sorted; contains the sorted result

isAscii: if false, true Unicode collation will be used

bubbleSort

public static void bubbleSort(java.lang.String[] str)

Sorts the array of Strings using bubble sort.

Parameters:

str: the array of Strings being sorted; contains the sorted result. Compar-
ison will be done using true Unicode collation.

The util Package 655

One of the benefits of LDAP compared to relational databases is that there is a sub-
stantial body of predefined schema elements, especially for managing user infor-

mation. You can start adding data immediately to an LDAP server.
The standard LDAP schema elements are defined in RFC 2256, “A Summary of

the X.500(96) User Schema for Use with LDAPv3”; RFC 2307, “An Approach for
Using LDAP as a Network Information Service”; RFC 2247, “Using Domains in
LDAP/X.500 Distinguished Names”; RFC 2377, “Naming Plan for Internet Directory-
Enabled Applications”; and the Internet Draft “Definition of the inetOrgPerson LDAP
Object Class.” The lists that follow are not comprehensive; they contain only the most
commonly used schema elements.

There is an online catalog for browsing standard LDAP schema elements at
http://www.hklc.com/ldapschema/. Netscape publishes a comprehensive list of all
schema elements it supports, including add-ons by various Netscape server products,
at http://home.netscape.com/eng/server/directory/schema/.

Object Classes

As defined in RFC 2252, an object class may be abstract, structural, or auxiliary. An
abstract object class may not be used by itself in an entry; a derived structural class is
required. Each directory entry must include one structural object class. An entry may
also include zero or more auxiliary (mix-in) classes.

Common
LDAP Schema
Elements

657

A P P E N D I X D

Structural Object Classes

REQUIRED OPTIONAL
NAME OID SUPERIOR ATTRIBUTES ATTRIBUTES

country 2.5.6.2 top c description

searchGuide

locality 2.5.6.3 top description

l

searchGuide

seeAlso

st

street

organization 2.5.6.4 top o businessCategory

description

destinationIndicator

facsimileTelephone

Number

internationalISDN

Number

l

physicalDelivery

OfficeName

postOfficeBox

postalAddress

postalCode

preferredDelivery

Method

registeredAddress

searchGuide

seeAlso

st

658 Common LDAP Schema Elements

Abstract Object Classes

NAME OID REQUIRED ATTRIBUTES OPTIONAL ATTRIBUTES

top 2.5.6.0 objectClass aci (only Netscape)

alias 2.5.6.1 aliasedObjectName

REQUIRED OPTIONAL
NAME OID SUPERIOR ATTRIBUTES ATTRIBUTES

street

telephoneNumber

teletexTerminal

Identifier

telexNumber

userPassword

x121Address

organizationalUnit 2.5.6.5 top ou businessCategory

description

destinationIndicator

facsimileTelephone

Number

internationaliSDN

Number

l

physicalDelivery

OfficeName

postOfficeBox

postalAddress

postalCode

preferredDelivery

Method

registeredAddress

searchGuide

seeAlso

st

street

telephoneNumber

teletexTerminal

Identifier

telexNumber

userPassword

x121Address

person 2.5.6.6 top cn description

sn seeAlso

telephoneNumber

userPassword

organizationalPerson 2.5.6.7 person destinationIndicator

facsimileTelephone

Number

internationaliSDN

Number

l

ou

Object Classes 659

REQUIRED OPTIONAL
NAME OID SUPERIOR ATTRIBUTES ATTRIBUTES

physicalDelivery

OfficeName

postOfficeBox

postalAddress

postalCode

preferredDelivery

Method

registeredAddress

st

street

teletexTerminal

Identifier

telexNumber

title

x121Address

inetOrgPerson 2.16.840.1.1.13730.3.2.2.13730.3.2.2 organizationalPerson audio

businessCategory

carLicense

departmentNumber

displayName

employeeNumber

employeeType

givenName

homePhone

homePostalAddress

initials

jpegPhoto

labeledURI

mail

manager

mobile

o

pager

photo

preferredLanguage

roomNumber

secretary

uid

x500uniqueIdentifier

userCertificate

userPKCS12user

userSMimeCertificate

groupOfNames 2.5.6.9 top cn businessCategory

description

member

o

660 Common LDAP Schema Elements

REQUIRED OPTIONAL
NAME OID SUPERIOR ATTRIBUTES ATTRIBUTES

ou

owner

seeAlso

groupOfUniqueNames 2.5.6.17 top cn businessCategory

description

o

ou

owner

seeAlso

uniqueMember

groupOfUrls 2.16.840.1.113730.3.2.33 top cn businessCategory

description

o

ou

owner

seeAlso

memberUrl

labeledURIObject 1.3.6.1.4.1.2 top labeledURI

referral 2.16.840.1.113730.3.2.6 top ref

dcObject 1.3.6.1.4.1.1466.344 top dc

subschema 2.5.20.1 top attributeTypes

cn

dITContentRules

dITStructureRules

nameForms

objectClasses

matchingRuleUse

matchingRules

Auxiliary Object Classes

REQUIRED OPTIONAL
NAME OID ATTRIBUTES ATTRIBUTES

posixAccount 1.3.6.1.1.1.2.0 cn description

gidNumber gecos

homeDirectory loginShell

objectClass userPassword

Object Classes 661

REQUIRED OPTIONAL
NAME OID ATTRIBUTES ATTRIBUTES

uid

uidNumber

posixGroup 1.3.6.1.1.1.2.2 cn description

gidNumber memberUid

objectClass userPassword

662 Common LDAP Schema Elements

Attributes

An attribute may also be referenced by an alias, if one is defined. The table of attribute types that
will be given shortly lists the standard aliases.

Attribute Syntaxes

Syntaxes define how attribute values are compared during a search or compare operation. LDAP
allows specifying unique rules for each type of search and sort: equality, substring, and ordering.
These rules are defined as additional qualifiers in the attribute definition, besides the syntax qual-
ifier. However, Netscape Directory Server and many other LDAP servers ignore the additional
qualifiers and just use the syntax qualifier.

RFC 2252 names a number of attribute syntaxes (inherited from X.500), but only a small
subset is commonly used in LDAP. In the table of attribute types, the following shorthand is used
for syntax types:

SHORTHAND OID DESCRIPTION

bin 1.3.6.1.4.1.1466.115.121.1.5 A binary value

ces 1.3.6.1.4.1.1466.115.121.1.26 IA5 String—case-sensitive string (on Netscape
servers it is UTF8)

cis 1.3.6.1.4.1.1466.115.121.1.15 Directory String—UTF-8, case-insensitive
string

dn 1.3.6.1.4.1.1466.115.121.1.12 A distinguished name

int 1.3.6.1.4.1.1466.115.121.1.27 Integer

tel 1.3.6.1.4.1.1466.115.121.1.50 Telephone number

Attribute Types

SINGLE-
NAME ALIASES OID SYNTAX VALUED

aci 2.16.840.1.113730.3.1.55 bin

aliasedObjectName 2.5.4.1 dn

altServer 1.3.6.1.4.1.1466.101.120.6 ces

attributeTypes 2.5.21.5 cis

audio 0.9.2342.19200300.100.1.55 bin

businessCategory 2.5.4.15 cis

c countryName 2.5.4.6 cis

carLicense 2.16.840.1.113730.3.1.1 cis

cn commonName 2.5.4.3 cis

createTimestamp 2.5.18.1 cis

creatorsName 2.5.18.3 dn

dc domainComponent 0.9.2342.19200300.100.1.25 cis

department 2.16.840.1.113730.3.1.2 cis

Number

description 2.5.4.13 cis

destination 2.5.4.27 cis

Indicator

displayName 2.16.840.1.113730.3.1.241 cis X

dITContentRules 2.5.21.2 cis

dITStructure 2.5.21.1 cis

Rules

dn distinguishedName 2.5.4.49 dn

employeeNumber 2.16.840.1.113730.3.1.3 cis X

Attributes 663

SINGLE-
NAME ALIASES OID SYNTAX VALUED

employeeType 2.16.840.1.113730.3.1.4 cis

facsimileTelephoneNumber fax 2.5.4.23 tel

gecos 1.3.6.1.1.1.1.2 cis X

gidNumber 1.3.6.1.1.1.1.1 cis X

givenName 2.5.4.42 cis

homeDirectory 1.3.6.1.1.1.1.3 ces X

homePhone 0.9.2342.19200300.100.1.20 tel

homePostal 0.9.2342.19200300.100.1.39 cis

Address

host 0.9.2342.19200300.100.1.9 cis

info 0.9.2342.19200300.100.1.4 cis

initials 2.5.4.43 cis

international 2.5.4.25 ces

IsdnNumber

jpegPhoto 0.9.2342.19200300.100.1.60 bin

l locality 2.5.4.7 cis

localityName

labeledUri labeledUrl 1.3.6.1.4.1.250.1.57 ces

loginShell 1.3.6.1.1.1.1.4 ces X

mail rfc822Mailbox 0.9.2342.19200300.100.1.3 cis

manager 0.9.2342.19200300.100.1.10 dn

matchingRuleUse 2.5.21.8 cis

matchingRules 2.5.21.4 cis

member 2.5.4.31 dn

memberUid 1.3.6.1.1.1.1.12 cis

664 Common LDAP Schema Elements

SINGLE-
NAME ALIASES OID SYNTAX VALUED

memberUrl 2.16.840.1.113730.3.1.198 ces

mobile mobileTelephoneNumber 0.9.2342.19200300.100.1.41 tel

modifiersName 2.5.18.4 dn

modifyTimestamp 2.5.18.2 cis

nameForms 2.5.21.7 cis

namingContexts 1.3.6.1.4.1.1466.101.120.5 dn

o organizationName 2.5.4.10 cis

objectClass 2.5.4.0 cis

objectClasses 2.5.21.6 cis

otherMailbox 0.9.2342.19200300.100.1.22 cis

ou organizationalUnitName 2.5.4.11 cis

owner 2.5.4.32 dn

pager pagerTelephoneNumber 0.9.2342.19200300.100.1.42 tel

physical 2.5.4.19 cis

Delivery

OfficeName

postOfficeBox 2.5.4.18 cis

postalAddress 2.5.4.16 cis

postalCode 2.5.4.17 cis

preferred 2.5.4.28 cis X

Delivery

Method

preferred 2.16.840.1.113730.3.1.39 cis X

Language

presentation 2.5.4.29 ces

Address

ref 2.16.840.1.113730.3.1.34 ces

Attributes 665

SINGLE-
NAME ALIASES OID SYNTAX VALUED

registered 2.5.4.26 cis

Address

roleOccupant 2.5.4.33 dn

roomNumber 0.9.2342.19200300.100.1.6 cis

searchGuide 2.5.4.14 ces

secretary 0.9.2342.19200300.100.1.21 dn

seeAlso 2.5.4.34 dn

serialNumber 2.5.4.5 cis

sn surName 2.5.4.4 cis

st stateOrProvinceName 2.5.4.8 cis

street streetAddress 2.5.4.9 cis

subschema 2.5.18.10 dn

Subentry

supported 2.5.4.30 cis

Application

Context

supported 1.3.6.1.4.1.1466.101.120.13 cis

Control

supported 1.3.6.1.4.1.1466.101.120.7 cis

Extension

supported 1.3.6.1.4.1.1466.101.120.15 int

LDAPVersion

supported 1.3.6.1.4.1.1466.101.120.14 cis

SASLMechanisms

telephoneNumber 2.5.4.20 tel

teletexTerminal 2.5.4.22 cis

Identifier

telexNumber 2.5.4.21 cis

666 Common LDAP Schema Elements

SINGLE-
NAME ALIASES OID SYNTAX VALUED

title 2.5.4.12 cis

uid 0.9.2342.19200300.100.1.1 cis

uidNumber 1.3.6.1.1.1.1.0 cis X

uniqueIdentifier 0.9.2342.19200300.100.1.44 cis

uniqueMember 2.5.4.50 dn

userCertificate 2.5.4.36 bin

userPassword 2.5.4.35 bin

userSMIME 2.16.840.1.113730.3.1.40 bin

Certificate

x121Address 2.5.4.24 ces

Attributes 667

The error codes that an LDAP server may return are defined in RFC 2251. In addi-
tion, a few error codes may be returned by the LDAP client (the SDK)—for exam-

ple, to indicate that the server could not be reached. However, no document exactly
defines the circumstances in which a server will return each possible error code in
LDAP.

The following error codes apply to Netscape Directory Server, and probably to
many other LDAP servers, but not to all. The list is not comprehensive. Codes without
comments in the third column are not currently returned to clients by Netscape Direc-
tory Server or generated by the SDK.

ERROR
CODE LDAPEXCEPTION CONSTANT POSSIBLE CAUSE(S)

0 SUCCESS The operation completed successfully

1 OPERATION_ERROR Invalid syntax for ACI or schema, or
inappropriate control for the operation

2 PROTOCOL_ERROR Invalid filter expression on search, or DN on
add, modify, or delete

3 TIME_LIMIT_EXCEEDED Either the server’s or the client’s specified
search time limit was exceeded

4 SIZE_LIMIT_EXCEEDED Either the server’s or the client’s specified
limit on number of search results was
exceeded

5 COMPARE_FALSE A compare operation returns mismatch

LDAP Error
Codes

669

A P P E N D I X E

6 COMPARE_TRUE A compare operation returns match

7 AUTH_METHOD_NOT_SUPPORTED The server does not support the requested
authentication method

8 STRONG_AUTH_REQUIRED The server requires an authentication
method stronger than unencrypted user
name and password

9 LDAP_PARTIAL_RESULTS The client has bound with LDAPv2, or the
server supports only LDAPv2, and the base
DN specified by the client is not among the
naming contexts of the server

10 REFERRAL The server is configured to return a referral
or search reference when an operation is
directed toward this DN

11 ADMIN_LIMIT_EXCEEDED To satisfy the search request, the server
would need to process too many entries; the
search may need to be narrowed, or the
server’s look-through limit raised

12 UNAVAILABLE_CRITICAL_ A control was provided with the request; the
EXTENSION control was tagged as critical, but the server

doesn’t support it

13 CONFIDENTIALITY_REQUIRED

14 SASL_BIND_IN_PROGRESS SASL authentication is being negotiated
between the client and the server

16 NO_SUCH_ATTRIBUTE An attribute to be modified or deleted was
not present in the entry

17 UNDEFINED_ATTRIBUTE_TYPE

18 INAPPROPRIATE_MATCHING

19 CONSTRAINT_VIOLATION Invalid attribute for this entry, or new
password does not meet password policy
requirements

20 ATTRIBUTE_OR_VALUE_EXISTS Attempt to add an identical attribute value
to an existing one

21 INVALID_ATTRIBUTE_SYNTAX

670 LDAP Error Codes

32 NO_SUCH_OBJECT Attempt to bind with a nonexistent DN, to
search with a nonexistent base DN, or to
modify or delete a nonexistent DN

33 ALIAS_PROBLEM

34 INVALID_DN_SYNTAX Invalid DN or RDN specified on adding an
entry or modifying an RDN

35 IS_LEAF

36 ALIAS_DEREFERENCING_PROBLEM

48 INAPPROPRIATE_AUTHENTICATION

49 INVALID_CREDENTIALS Invalid password or other credentials
supplied on bind

50 INSUFFICIENT_ACCESS_RIGHTS

51 BUSY

52 UNAVAILABLE Returned by SDK if server is not accessible

53 UNWILLING_TO_PERFORM User not allowed to change password,
password expired, operation not
implemented (moddn), attempt to modify
read-only attribute, attempt to delete all
schema elements, attempt to delete an object
class that has derived object classes, attempt
to delete a read-only schema element, the
database is read-only, no back end
(database) is available for the operation, or
other uncategorized error

54 LOOP_DETECT

64 NAMING_VIOLATION

65 OBJECT_CLASS_VIOLATION Invalid attribute specified for modify
operation on an entry

66 NOT_ALLOWED_ON_NONLEAF Attempt to delete an entry that has child
nodes

67 NOT_ALLOWED_ON_RDN

68 ENTRY_ALREADY_EXISTS

LDAP Error Codes 671

69 OBJECT_CLASS_MODS_PROHIBITED

71 AFFECTS_MULTIPLE_DSAS

80 OTHER

81 SERVER_DOWN SDK could not connect to server

89 PARAM_ERROR No modifications on a modify operation, no
attributes on an add operation, invalid scope
or empty search filter on search, or other
invalid argument to an SDK method

91 CONNECT_ERROR SDK reports unexpected error connecting to
server

92 LDAP_NOT_SUPPORTED

93 CONTROL_NOT_FOUND

94 NO_RESULTS_RETURNED

95 MORE_RESULTS_TO_RETURN

96 CLIENT_LOOP

97 REFERRAL_LIMIT_EXCEEDED SDK reports hop limit exceeded on referral
processing

672 LDAP Error Codes

Abstract object classes, 656
Abstract Syntax Notation (ASN.1), 23, 600
ACAP. See Application Configuration Access

Protocol
Access control, 23, 107, 160, 196

for existing/new applications, 43–44
and extended operations, 577
and groups, 158
lack of standards for, 165–166
and LDAP, 25
and searches, 80
for VLV, 541

Access control instructions, 146, 166–167
scope of, in sample directory, 172
seeing for sample directory, 168, 170
viewing, 168–169

Access control lists, 165
modified through LDAP, 175–176
setting up, 166–172
viewing through LDAP, 172–175

Access Control Model for LDAP, 595
Access Control Requirements for LDAP, 595
Access rights, 166
aci attribute, 172, 173
ACIs. See Access control instructions
Active Directory (Microsoft). See Novell

Directory Services
add method, 117, 154
add permissions, 167, 174

ADSI (Microsoft), xvii
Affiliation

DIT using ou attribute for representing, 379

Affiliation chains
and ou attribute, 379

Airius.com database, 74
setting up, 55–56
structure of, 58
using command-line tools, 57–66

airiusplus.ldif file, 385, 389, 403, 405
Alias, 497
all permissions, 174
Anonymous authentication, 108
ANONYMOUS SASL mechanism, 191, 192
API. See Application program interface
Applets, 199–200

accessing from JavaScript, 243–249
benefits of, over stand-alone applications,

241
certificate-based authentication enabled for,

182
in Netscape Navigator, 181
packaging for Java Plug-In Software, 222
packaging in Microsoft Internet Explorer,

217–218
packaging in Netscape Navigator, 209
sandbox restrictions on, within browsers,

241
and security, 199
signing, 200, 221–222, 243
testing of, in Netscape Navigator, 214–215
Web pages created for, 221

Application Configuration Access Protocol,
183

Application program interface, 4

Index

673

ARCHIVE tag, 221
ASCII characters/text, 503
Asian languages

double-byte character sets for, 342
ASN.1. See Abstract Syntax Notation
Asterisk

as presence indicator, 80
Asynchronous interface, 519

message processing with, 583–585
for multiplexing result streams

from searches on three servers, 585–586
using, 581–587

Asynchronous multiplexed searches
on different subtrees of same server,

586–587
Attributes, 83–85

adding, 118
with client-side sorting, 100
defining in schema configuration files, 29
definitions of, 29, 521, 524
of entry, 26
indexed, 516
and matching-rule schema elements, 630
modifying, 118–119
for photo storage, 131
presence of, with one or more values, 85
removing, 119–120
for requesting, 67, 71–73
with/without presence, 84–85

Attribute syntaxes, 662
Attribute types, 661–667
authenticate method, 189, 276
Authentication, xvii, 44, 75

and access control configuration, 146
basics of, 107–110
and BindProc, 492
and bind rules, 167
certificate-based, 15, 181–182
certificates for user, 378
changing, 510
classes for, 619
and cloned connections, 512
and directories, 10–14
directory-based, in JavaScript, 287–288
friendly screen, 425
identities for, 515–516
JavaBean for, 274
in LDAP, 25

and LDAPRebindProc, 575
password-based, 177–178
and proxied authorization control,

559–561
SASL, 182–196
for searches, 101–103
for servlets, 424
types of, 176–177
with user-supplied user ID/password,

108–110
using SASL, 176
with Virtual List View, 554

Authentication Methods for LDAP, 596
Authentication models

SDK provision for, 39
Automatic referrals, 573–576
Auxiliary object classes, 661–662

Backlog property, 581
Bandwidth requirements

for server-side applications, 423
Base distinguished name, 67, 68

specifying, 75. See also Distinguished names
Base option, for scope, 68
Basic Encoding Rules, 23

classes for encoding basic data types, 564
classes for grouping/tagging data elements,

565
and controls, 535, 561–572

BatchSize, 498
BeanInfo class, 238
BER. See Basic Encoding Rules
BEROctetString, 564
BevelArrowIcon class, 644
Binary attributes

examples of, 77
Binary data

storing, 121–134
Binary values, 413
Bindery, the, 21
Binding, 13

anonymous, 98
bind method, 492
BindProc, 492
Bind rule, 166, 174

authentication requirements specified by,
167

BlankIcon class, 643

674 Index

Bookmarks, 20
BranchDelete, 151
Browsers

CA certificates imported into, 214
Java applets within, 199
sandbox restrictions on applets run within,

241
and signed applets, 200, 201
UTF8 and older, 505
and writing LDAP applets for Netscape

Navigator, 204–215
ByteBuf, 636

CA. See Certificate authority
cabarc utility, 217
CABBASE applet parameter, 221
CAB (cabinet) file

code packaged in, 217
creating, 215
signing, 216, 220, 244

Caches/caching, 626
mechanism for, 516–517
and performance, 159
for phone book servlet, 446
purging of, 518

Caching module, of SDK, 486
CallbackHandler interfaces, 184, 185–186
Callbacks

in SASL, 184–186
case-insensitive string, 29

syntax, 380
Case-insensitivity

of attribute names, 31, 73
for common names, 48, 78

Case sensitivity
of attribute names, 26

CBlobInputStream.class, 484
CCITT. See International Telecommunications

Union
CellAttribute, 412
Certificate authority, 179, 181, 182, 200, 201,

202, 204, 209, 217, 222
Certificate-based authentication, 176

using, 181–182
Certificate dialog box

in Netscape Navigator, 206
Certificate generation

testing in Microsoft Internet Explorer, 218

Certificates, 14
requests for, 448
and signed applets, 200–204
for user authentication, 378

CGI. See Common Gateway Interface
Chadwick, David, 598, 602
Chaining, 23
changesOnly, 556
changeTypes, 556
Character sets, 503

and string data, 503
Child filter, 306–308
cis. See case-insensitive string
CLASSPATH, 250, 331

and JAR files, 207, 244
for servlet engine, 426

CLDAP Application Program Interface, The,
592, 594

Client controls, 534
LDAPBind for, 575–576

ClientFactory, 190, 194
Client-side programs, 423
Client-side sorting, 73, 100, 104, 627

results with, 101
Cloned connections

and constraints, 489
safety of, 512–514

cn=config entry
ACIs for, 171

cn. See common name
Codebase

as principal, 215
Code signing, 209

for Java Plug-in Software, 223–225
in Microsoft Internet Explorer, 218–220
in Netscape Navigator, 210–214
and packaging applet, 222

COLLECTIVE element qualifier, 521
COM. See Component Object Model
Comité Consultatif et Téléphonique

Télégraphique. See CCITT
Command-line tools

using, 57–66
Common Gateway Interface, 8
Common name, 29, 63

attribute values, 48
case-insensitivity for, 78

compare method, 88, 105

Index 675

compare permission, 167, 174
Component Object Model

Java objects wrapped in, 243
Components

and JavaBeans, 267
and property change events, 270

COM wrappers
creating, 265

Configuration Directory Server Administra-
tion, 52

Connection backlog, 580–581
Connection-based protocols

authentication support for, 182
Connection constraints

copying, 512–514
Connection failover options, 579
Connection options, 489, 511
ConnectionPool, 637
Connection pools/pooling, 514–516

constructors for, 429
model, 429
for phone book servlet, 446
setting up, 430

Connection privileges, 204
requesting in Microsoft Internet Explorer,

216–217
Connections

avoiding unnecessary, 514
connect method, 271
Constraints, 489–490

copying, 511
for searching, 493–498

Containers, 315
contentCount, 536
Context cookie, 536
Control Data, 22
Controls, 510, 519, 534–572, 587, 621

and Basic Encoding Rules, 561–572
constructing, 561–564
manageDsaIT, 575
proxied authorization, 559–561
specifying as options, 511
virtual list view, 535–554

Core JavaScript Guide, 255
Corporate LDAP directory

SKD access to, 48
using, 428

CParseRFC1867, 466, 484

CRAM-MD5, 187
createInitialResponse method, 189
Cryptography

public-key, 200. See also Authentication;
Security

Custom request control
implementing, 567–568

Custom response control
implementing, 568

Custom security level, to zone, 216

Data
caching, 429
encryption/decryption of, 200
organization of, in directory, 4
replication, 23. See also Securing data

Datacraft, 22
DateUtil class, 292, 645
Deadlocks, 581
Debug class, 645–646
Debugging, 645–646
Decryption, 200
Delays, 579
delete permissions, 167, 174
DEN. See Directory Enabled

Networking
Dereference setting

valid options for, 497
Deserialization, 278, 312, 541
Desktop Management Task Force, 32
Digital certificates, 15, 39, 179

and applet signing, 200, 203, 204
for authenticating LDAP client to directory

server, 181
code signing with, 217
storage of, 121

Digital signatures, 200, 201, 222
for class files, 204
for class files in CAB file, 215
files, 212, 213, 224, 263

Directories, 111–112, 149, 486, 515
access control lists in, 165
as access point for application information,

14–16
add-on products for, 603
and authentication, 10–14, 102, 103,

176–177
and bind rule, 174

676 Index

certificate-based authentication for,
181–182

configuration information stored in, 16
connecting over SSL, 180
customizable applications in, 17
defined, 4–6
deleting entries from, 147–151
designated privileged users for, 107–108
displaying contents of, 408
entries added to, 59–60
information needed for searches, 67–74
for Internet, 20
Java objects stored in, 135
LDAP information and naming models,

26–31
mapping to nodes, 387
modifying existing entries in, 118
multivalue attributes in, 83
obtaining schema of, 521–522
parsing reporting relationships in,

380–392
phone numbers, 6–7
photograph storage/retrieval in, 121–134
relational databases contrasted with, 5–6
replication of, 505–506
search method for searching, 244–248
schema of, 27
serializing/deserializing data to/from,

137–146
for single network: proprietary solutions,

20–21
typical architecture of, 69
updating, 107
and user preferences, 354
Web-based interfaces to, 8
what is located in, 3–17

Directory applets
simple example for Java Plug-In Software,

229–240
Directory-based authentication

in JavaScript, 287–288
Directory browser

for graphical LDAP JavaBeans, 292
Directory clients

for online phone book, 7–10
Directory-enabled applications

platform for, 39–40
Directory Enabled Networking, 32

Directory Express, 8, 9
search page, 10
update page, 11

Directory Information Tree, 377
for organizational mapping, 378
using ou attribute to represent affiliation,

379
Directory-linking tool, 41–43
Directory lister

in graphical LDAP JavaBeans, 332–339
Directory Manager

distinguished name and password of, 53
identity of, 54

Directory SDK for Java, xv, xvi, 37–48, 66
cache mechanism of, 446
character sets handled in, 503
command-line tools for, 57–66
and controls, 534
conversions between UTF8 and UCS2, 505
and performance, 514
and referrals, 572

Directory search performance
improving, 103–105

Directory Server Console
use of, 64
viewing/modifying ACIs in, 167

Directory Server Gateway, 8, 9
search page, 12

Directory set-up, 51–66
downloading/installing Netscape Directory

Server, 51–55
setting up sample database, 55–56
using command-line tools, 57–66

Directory tree
access control for, 43
with multiple naming contexts, 30

Distinguished names, 13, 25, 26, 31, 38, 39,
41, 105, 108, 115, 146, 152, 153, 156,
159, 273, 419, 548, 633

for authenticating, 103
base, 67, 68
in certificate, 378
and certificate-based authentication,

181–182
changing, 410
choosing, 64
code for authenticating, 578–579
and compare method, 88

Index 677

Distinguished names (cont.)
creating, for entry, 111
and deleting records, 147
of Directory Manager, 53
of entry, 82
and proxied authorization control, 560,

561
DIT. See Directory Information Tree
DMTF. See Desktop Management Task Force
DNs. See Distinguished names
DNS. See Domain Name System
dn syntax, 380
Domain Name System, 20, 593
doPost handler, 424, 448
Double-byte character sets

for Asian languages, 342
DSE

controls in root, 535
Duplicate entry representation, 26
Dynamic attributes

in LDAP, 25
Dynamic group, 159, 160, 163

user added to, 161
user removed from, 161–162

EJB. See Enterprise JavaBeans
Electronic commerce

and LDAP growth, 31
Electronic directories

brief history of, 19–24
E-mail

and directories, 14
E-mail programs

stored configuration information for, 15
Employee information

in directory, 6–7
Employee searching

in directory, 7–8
Employee self-administration, 428
enablePrivilege method, 205

enabling, 206
invoking, 207–208

Encryption, 14, 179, 200
with public-key cryptography, 201

Enterprise JavaBeans, xv, 44
Entries

and ACI, 166
ACIs added to, 175–176

adding, 59–60, 111–117
attributes and corresponding values of,

61
attribute values extracted from, 82
deleting entries, 147–151
and distinguished names, 26, 64, 82
examples of defining/adding, 64–66
filtering, 70
finding, with manager, 384
inspecting properties of, 408–415
modifying existing, 117–146
moving to new location, 154–156
object classes applied to, 61
renaming: modifying the RDN, 151–158
summary of steps for adding, 111–112
unique identification of, 85. See also

Directories
EQUALITY element qualifier, 521
Error Codes, 669-672
EUC, 342, 503
Exceptions, 265, 495, 620

and authentication, 103
detecting/processing during iteration of

search results, 261
processing, 117
throwing, 260
trapping potential, 254

Existing entries
adding attributes, 118
modifying, 118–119
removing attributes, 119–120
storing binary data, 121–134
storing preferences and state, 135–146
updating multivalued attributes, 120–121

Extended operations, 519, 576–579, 587
uses for, 577

extensions, 500
EXTERNAL mechanism, 187, 189
Extranet

and phone company servlet, 428
storing preferences, 107

Failover, 587
and reconnecting, 579–580

Failure to bind, 13
Families of Entries, 598
Filter configuration file

example of, 89

678 Index

format for, 88
Filter configuration filters

advantages of, 92–93
Filter description file

reading, 96
Filters, 88–100

building at run time, 89
enumerating, 92
searching, 67, 70–71

flattenBER method, 563
ForbiddenTargetException, 205
Friendly authentication screen, 425

getAttribute, 81, 84, 85
getAttributeSet, 81
getAuthenticationDN, 516, 578
getBinaryValues, 78
getBytes, 345
getByteValues, 130, 141
getDN, 81, 82
getFilters, 92
getFirstPosition, 537
getID, 578
getMechanismName, 190
getName, 82
getOption, 490, 491
getProperty, 406
getRebindAuthentication, 574
getSearchConstraints, 75
getSize, 545
getString Values, 77, 78, 82, 83
getSubordinates, 384
getTreeCellRendererComponent, 397
Good, Gordon S., 601
Grapevine, 19
Graphical LDAP JavaBeans, 292–339
groupOfNames, 158
groupOfUniqueNames, 158
groupOfUrls object class, 159
Groups, 158–162

access allowance/denial to, 174
in directory, 107
adding users to group, 161
removing users from group,

161–162
using LDAPIsMember Bean, 162

GSSAPI
for authenticating, 190

High security level, to zone, 216
HopLimit, 492
Host name, 58, 60, 66, 67, 68

of LDAP server, 269
“Hot standby,” 506
Hot switch-over, 580
Howes, Timothy A., 601
HTML page, 243

JavaScript code in, 248–249
JavaScript code signed in, 264
and phone book servlet, 486

HTTP, 500
for phone book servlet, 427

Human Resources Department, 14, 15, 40

IANA. See Internet Assigned Numbers
Authority

IBM, 31, 35
Identities

for authenticating, 515–516
IETF. See Internet Engineering Task

Force
IMAP. See Internet Message Access Protocol
Indexed attributes, 104, 516
Indexes

VLV, 539–541
inetOrgPerson, 27, 41, 63, 112, 374, 380

attributes, 27–29
entry example, 30

Information creation/maintenance,
107–163

adding entries, 111–117
authentication basics, 107–110
deleting entries, 147–151
group management, 158–162
modifying existing entries, 117–146
renaming entries: modifying the RDN,

151–158
Information Systems Department, 14, 15, 48
init method, 206, 230

properties file handled by, 444
of servlet, 424, 429

Innosoft, 31
Intelligent failover, 580
International Organization for Standardiza-

tion, 21, 598
International Telecommunications Union, 21,

598

Index 679

Internet, 3, 51, 216
directories for, 20
downloading applets from, 215
LDAP and electronic commerce on, 31
LDAP information on, 602
LDAP servers searched over, 606
searching publicly available directory on, 47

Internet Assigned Numbers Authority, 183,
523

Internet Drafts
LDAP, 594–598
obtaining, 591, 592

Internet Engineering Task Force, 165, 507,
591

LDAP Extensions working group in, 25
Internet Explorer. See Microsoft Internet

Explorer
Internet Message Access Protocol, 183
Internet X.509 Public Key Infrastructure

LDAPv2 Schema (RFC 2587), 594
Internet X.509 Public Key Infrastructure

Operational Protocols-LDAPv2 (RFC
2259), 593

Intracus, 603
Intranets, 3

and phone company servlet, 428
Invisible LDAP JavaBeans, 267–291

directory-based authentication in
JavaScript, 287–288

LDAPBasePropertySupport, 269–274
LDAPGetEntries, 278–287
LDAPSimpleAuth, 274–278
PropertyChangeEvent notifications,

289–291
IP addresses, 20, 458
isAuthenticated method, 515
isCritical, 557
ISO. See International Organization for

Standardization
ISOCOR, 22
ITU. See International Telecommunications

Union

JAR files, 204, 212, 213, 221, 244
adding to CLASSPATH, 207
for applet with Netscape Navigator, 204
browser validating signed, 203
classes packaged in, 223

in CLASSPATH of its Java Virtual Machine,
426

and code signing, 210, 263
creating, 238
creating signed, 202
packaging applet into, 222

jarsigner tool, 223
to create signed JAR file, 238–239

JavaBeans, 44, 162
and event notifications, 289
graphical LDAP, 292–339
invisible LDAP, 267–291
requirements for, 269
verifying functionality of, 285

Java class libraries, 503, 504
javaClassName attribute 136
Java Community Process (Sun), 186–187
Java Database Connectivity, 42
Java Development Kit, 45
Java exceptions

throwing/catching in JavaScript, 255–261
Java Foundation Classes, 221

applets, 221
simplifying use of Bean in, 292

Java language, 135, 265, 267
character sets handled in, 503
input/output reader and writer classes, 504
and LiveConnect, 254

Java LDAP API, 503
Java LDAP Application Program Interface,

The, 595
Java LDAP Application Program Interface

Asynchronous Extension, The, 595
Java Naming and Directory Interface, 35–36
java.net.URLConnection, 502
JavaObject, 250
Java objects

accessing from JavaScript, 250–254
and Jini, 15
use of, for returning/processing data, 38

Java Plug-In Software, 241
codebase/signer specified with, 227
Keystore dialog box of, 226, 227
LDAP applets written for, 221–228
Permissions dialog box of, 227
Policy Tool dialog box of, 226, 227
simple example for, 229–240

Java Runtime Environment, 225, 226

680 Index

JavaScript, xv, 277
accessing invisible LDAP applet from, 249
accessing Java applets from, 243–249
accessing Java objects from, 250–254
directory-based authentication in, 287–288
Java exceptions in, 255–260
limitations with, 265
and LiveConnect, 254–255
reading attributes with, 256
requesting privileges and signing code in,

262–264
SDK from existing, 38
search results from, 255

JavaScript arrays of strings, 254
JavaScript code

signing, 255, 262–264
JavaScript Packages object, 250
Java Security dialog box

in Netscape Navigator, 205
javaSerializedData, 136
javaSerializedObject, 137
Java Server Pages, xv
Java Servlet Development Kit (JSDK), 426
Java servlets, xv
Java 2 security tools, 221, 222, 227
Java Virtual Machine, 221, 426, 580
javax.auth.security.callback package, 184
javax.net.ssl.SSLSocket abstract class, 179
JDBC. See Java Database Connectivity
JDK. See Java Development Kit
JFC. See Java Foundation Classes
Jini

web site and capabilities for, 15
JNDI. See Java Naming and Directory

Interface
JPEG files

displaying, 128
reading, 126

jpegPhoto attribute, 78, 130, 408
JPEG photographs

uploading by users, 466
JRE. See Java Runtime Environment
JRun engine (Live Software), 484
JScript

accessing LDAP classes from, in Internet
Explorer, 264–265

JSDK. See Java Servlet Development Kit
jsdk.jar, 424

JSLDAPConnection, 258–260
JVM. See Java Virtual Machine

Key pair, public-private
generating for Java Plug-in Software,

222–223
Keystore dialog box

of Java Plug-In Software, 226, 227
keystore, 222

on end user’s system, 225
verifying new certificates in, 223

keytool utility, 222, 226

latin-1 character set, 503
LDAP, xv, 6, 19

access control lists modified through,
175–176

access control lists viewed through,
172–175

authenticating with SASL in, 183–184
books about, 601
collections of documents and links on,

604
as complete system, 24
early work on, 22–23
extending, 534
future directions for, 24–26
as gateway to X.500, 22
information model, 26–30
naming model, 30–31
Netscape Directory Server as example of,

7–10
newsgroups, 605
Request for Comments, 592–594
scripting, 243–265
simplifications of X.500, 23–24
use of, in servlets, 424–425
UTF8 in, 342
in your Inbox, 605

LDAPApplet.class file
signing, 211–212

LDAP applets for Java Plug-in Software,
221–228

end user system set-up, 225–228
generating key pair and self-signed

certificate, 222–223
packaging applet, 222
signing code, 223–225

Index 681

LDAP applets for Microsoft Internet Explorer,
215–220

code signing, 218–220
connection privileges requested, 216–217
packaging applet, 217–218
test certificate generation, 218

LDAP applets for Netscape Navigator,
204–215

applet packaging, 209
codebase used as principal, 215
connection privileges requested, 204–208
signing your code, 210–214
test certificate generation, 209–210
testing applet, 214–215

LDAPAsynchronousConnection, 582, 607
LDAPAttribute, 83, 616

creating for multivalued attribute, 111–112
creating for single-valued attribute, 111
methods in, 82

LDAPAttributeSchema, 523, 630
LDAPAttributeSet, 111, 613, 615

LDAPAttributes created/placed into, 115
LDAPBasePropertySupport, 269–271

implementation of, 267–274
LDAPBind, 620

for complete client control, 575–576
object, 490

LDAPCache, 486
LDAP C API Extensions for Persistent

Search, 594
LDAP C API Extensions for Scrolling View

Browsing of Search
Results, 595
LDAP client

writing as applet, 199
writing as stand-alone application, 199

LDAPClientFactory interface, 190
LDAP client SDKs, 602–603
LDAPCompareAttrNames constructor, 101
LDAPConnection, 111, 117, 507, 543,

609–612
and BindProc, 492
compare method of, 88
and connection management, 607, 608
encapsulation by LDAPConnectionObject

inner class, 438–439
and LDAPAsynchronous Connection, 582
retrieving current settings from, 494
returning to phone book servlet, 458

LDAPConnection.authenticate, 177, 178,
183, 187, 196

LDAPConnection.clone, 512
LDAPConnection.connect, 579
LDAPConnection.delete, 147, 149
LDAPConnection.modify, 175, 581
LDAPConnectionPool, 430, 441, 485
LDAPConnection.read, 85
LDAPConnection.rename, 151, 152
LDAPConnection.search, 502
LDAPConnSetupMgr object, 607
LDAPConnThread, 607, 626
LDAPConstraints, 489, 511

construction of, 490
options in, 491

LDAPControl, 565
flattenBER method in, 563

LDAP Control and Schema for Holding
Operation Signatures, An, 596

LDAP Control Extension for Server Side Sort-
ing of Search Results, 597

LDAP Control for a Duplicate Entry Repre-
sentation of Search Results, 597

LDAP Data Interchange Format, 60–63
file creation with new entries, 64
information for entries, 64–65
reader classes, 634–636
record classes, 634
stream reader and base64 handlers, 635

LDAPDN, 631
LDAP Duplication and Update Protocol, 25,

594, 605
LDAPEntry, 390, 615

methods in, 81
LDAPEntryChangeControl, 623
LDAPEntry object

contents of, 112
creating/adding to directory, 115

LDAP error codes, 669–672
LDAPException, 80, 274, 498
LDAPException.INVALID_CREDENTIALS,

177
LDAPException.NO_SUCH_OBJECT, 177
LDAPExtendedOperation object, 578
LDAPExtendedResponse, 614
LDAP Extensions for Scrolling View Brows-

ing of Search Results, 597
LDAPEXT (LDAP Extensions Working

Group), 25, 594

682 Index

LDAPFilterDescriptor object, 92
LDAP gateway, 8
LDAPGetEntries, 278–287

PropertyChangeListener added to, 290
LDAP Internet Drafts, 594–598

Access Control, 595
authentication and security, 596–597
C API, 594–595
controls and extended operations,

597–598
Java API, 595
other extensions, 598
Replication, 595–596

LDAPInterruptedException, 621
LDAP JavaBeans, 421
LDAPMatchingRuleSchema, 523, 630
LDAPMessage, 583, 613
LDAP message and data types, 612
LDAPModification, 117, 613, 617
LDAPModification.REPLACE, 119, 131, 142
LDAPModificationSet, 117, 613, 617
LDAPModify, 59, 64–66, 353
LDAPObjectClassSchema, 523, 631

accessors of, 528
LDAP Persistent Search Simple Change Noti-

fication Mechanism, 594
LDAPPersistSearchControl, 623

constructor parameters for, 556
LDAPPersistSearchControl.ADD, 556
LDAPPersistSearchControl.DELETE, 556
LDAPPersistSearchControl.MODDN, 556
LDAPPreferences1, 354, 361, 368, 370
LDAPPreferences2, 365, 366, 368, 370, 374
LDAPPreferences3, 370, 374
LDAPProxiedAuthControl, 624
LDAPRebind, 574, 620
LDAPRebindProc, 575
LDAPReferralException, 621
LDAP Replication Architecture, 595
LDAPResponse, 583, 613
LDAPResponseListener, 582, 583, 619
LDAPS, 179, 182
LDAPSchema, 628
LDAPSchemaElement, 523, 524, 629, 630
LDAPSchemaElement.binary, 521
LDAPSchemaElement.ces, 521
LDAPSchemaElement.cis, 521
LDAPSchemaElement.dn, 521
LDAPSchemaElement.integer, 521

LDAP schema elements, 657–667
attributes, 662–667
object classes, 657–662

LDAPSchemaElement.telephone, 521
LDAPSchema.fetchSchema, 522, 523
LDAPSchema.getObjectClass, 522–523
LDAP SDK. See Directory SDK for Java
LDAPSearch, 7, 8, 365, 540

and authenticating to directory, 13
entries found with, 59

LDAPSearchConstraints, 489, 493, 511
constructor, 494, 495
methods of, 73

LDAP searches
executing, 96–98
results handling, 80–83

LDAPSearchListener, 619
LDAPSearchResponseListener, 582, 583
LDAPSearchResult, 613, 614
LDAPSearchResultReference, 614
LDAPSearchResults, 80, 81, 619
LDAPSearchResults.next, 260, 498
LDAPSearchResults.nextElement, 498
LDAP Service Provider for JNDI, 187
LDAPSimpleAuth, 274–278, 280, 287
LDAPSocketFactory, 179, 181

implementation, 607
LDAPSortControl, 624
LDAPSortKey, 627
LDAPSSLSocketFactory, 179, 181, 182
LDAPSSLSocketWrapFactory, 179, 180, 607
LDAPStringControl, 622
LDAPTableModel, 408, 410, 411
LDAP URL Format, The (RFC 2255), 593
LDAPUrl object

creating/using for search, 501
LDAP URLs, 499–503, 518, 632

building, 159
examples of, 500–501
extracting components of, 501–502
formulating, 160
IETF standard, 499–501
limitations with, 502–503
parsing, 38
using in Java, 501–502

LDAP utility classes on CD-ROM
table package, 639–645
util package, 645–655

LDAPv2, 75, 103

Index 683

LDAPv3, xvi, 24, 32, 153
and authenticating, 103
and extended operations, 576–579
extensions to C API for accessing LDAP,

592
interface, 607
and password-expired control, 558
schema reading/updating, 519–520
server, 75
server-side sorting with, 100

LDAPv3 Extensions for Dynamic Directory
Services (RFC 2589), 594

LDAPVirtualListControl, 511, 562, 625
LDAPVirtualListResponse, 564–565, 566,

625
LDAP V3 Replication Requirements, 596
LDAPv3 Triggered Search Control, 597
LDARebind, 490
LDDAPPersistSearchControl.DELETE, 556
LDIF. See LDAP Data Interchange Format
LDUP. See LDAP Duplication and Update

Protocol
LDUP Replication Information Model, 596
LDUP Update Reconciliation Procedures, 596
Leaf nodes, 147, 329, 330, 374
Lightweight Directory Access Protocol. See

LDAP
Lightweight Directory Access Protocol (v3)

(RFC 2251), 593
Lightweight Directory Access Protocol (v3):

Attribute Syntax
Definitions (RFC 2252), 593
Lightweight Directory Access Protocol (v3):

Extension for Transport Layer Security,
596

Lightweight Directory Access Protocol (v3):
UTF-8 String Representation of Distin-
guished Names (RFC 2253), 593

LiveConnect, 243, 250
and JavaScript, 254–255

Location-independent applications, 341–375
Teex multicharacter-set text editor, 342–374

Loose consistency, 507
Low security level, to zone, 216

mail attribute, 63, 118
Mailing lists, 107, 160

and groups, 158

Mail server, 15
makecert utility, 218
manageDsaIT control, 575
ManagementParser, 380, 381, 396, 401, 402
ManagementParser2, 392–395, 393
manager attribute, 380, 385, 393
Manager entries

nonmanager entries distinguished from, 384
manager value, 382
Manifest file, 212, 224
Matching rules, 530
MatchingRules attribute, 520
Matching-rule schema elements

and attribute, 630
MatchingRuleUse attribute, 520
MaxBackLog, 498
Maximum size setting, 485
MaxResults, 497–498
MaxSize, 517
Medium security level, to zone, 216
MemberOf attribute, 160

dynamic group using, 160–161
MemberUrl, 159
Memory usage

in Directory SDK for Java, 514
Message digests, 201, 202

of signature instruction file, 212, 213, 224
Message queueing and delivery, 618
Message queues, 507
Microsoft Active Directory, 64, 534
Microsoft Internet Explorer, 32, 241

accessing LDAP classes from JScript in,
264–265

directory browser applet in, with Java Plug-
In Software, 240

LDAP applets written for, 215–220
permission INI file editor for, 219

Microsoft Personal Web server, 238
Microsoft SDK for Java, 215, 217, 220
Microsoft Visual J++, 265
Mobile phone numbers

updating, 466
and user self-administration, 428

Modeling relationships, 377–421
attributes as pointers, 378–420
mirroring organizational structure,

377–378
modify method, 117

684 Index

Mozilla.org, 32, 33
Multimaster replication, 507
Multipart form data, 466
Multiple lines

breaking lines into, 62
Multivalue attributes, 85, 118, 119

representing in Java and JavaScript, 262
updating, 120–121

NADF. See North American Directory Forum
NameCallback, 185
Named reference, 572
Named Referrals in LDAP Directories,

598
Naming contexts, 30
NDS. See Novell Directory Services
Netcenter LDAP directory, 47, 341
Netscape, 24, 31, 35

defining VLV search and filter for,
539–541

JAR format used by, 214
single sign-on solution with, 15
Test Drive program of, 51

Netscape Administration Server , 9
Netscape Communicator, 15, 32

single sign-on solution of, 15
Netscape Console, 52
Netscape Directory Server, xvii, 7–10, 27, 55,

64, 100, 172, 173, 370, 495, 497
and authenticating to directory, 176
cn=config entry in, 171
connecting to, over SSL, 179–180
controls reported in, 535
downloading/installing, 51–55
dynamic group supported by, 159
error codes applying to, 667
and extended operations, 577
installing, 52–55
and numSubordinates attribute, 323
and password expiration, 557
and proxied authorization control, 560
SASL support in, 183
syntax for expressing ACIs in, 166
version 4, 104
and VLV access control, 541
VLV results provided by, 539

Netscape Directory Server Administrator’s
Guide, 168, 172, 175, 182

Netscape Directory Server Installation Guide,
52

Netscape Directory Server Plug-In Program-
mer’s Guide, 190

Netscape Enterprise Server, 485
servlet engine in, 425–426
and servlet storage, 426–427

netscape.ldap.ConnectionPool, 486
netscape.ldap.util Package, 633
Netscape Navigator, 181, 241

applets working outside sandbox in,
200

Certificate dialog box in, 206
Java Security dialog box in, 205
LDAP applets written for, 204–215
LiveConnect used in, 250
test certificate listing in, 211

netscape.net.SSLSocket class, 180, 181
netscape.security.PrivilegeManager class

compiling code for referencing, 207
Netscape Signing Tool, 209, 210, 214
NetWare 5, 21, 32
Network Information System, 20–21, 603
next method, 80, 572

and exceptions, 260–261
nextElement method, 80, 572
next method, 80, 572
NIS. See Network Information System
NIS+, 15, 20–21
Non-ASCII string data

storage issues with, 503, 518
North American Directory Forum, 599
NO-USER-MODIFICATION element

qualifier, 521
Novell, 35
Novell Directory Services, 21, 55, 165, 465,

536
nsValueItem, 373
nsValueType, 371
NT server, 15

o attribute, 61
objectclass attribute, 26
Object class definitions

sorted by superior, 531–532
Object classes, 520

abstract, 656
applying to entry, 61

Index 685

Object classes (cont.)
auxiliary, 661–662
of entries in sample directory, 61–63
specifying, for retrieval of desired type

entries, 104
structural, 658–661

Objects
serializing, 135

Object-signing certificate, 204, 205, 209, 210
Oblix Corporate Directory, 603
OBSOLETE element qualifier, 521
OIDs

with C LDAP SDK, 535
for response controls, 565
of schema element, 521

Online phone book
directory clients for, 7–10

OpenLDAP, 31, 166
Open System Interconnection, 22
Operational attributes, 72
Options, 489

connection, 511
in LDAPConstraints, 491
specifying controls as, 511
view into, 490–493

Oracle, 31
ORDERING element qualifier, 521
Organizational charts

displaying, 406
dynamic, 40–41
tree component, 396–404

Organizational information
in directory, 4

Organizational structure
mirroring, 377–378

organizational unit, 29
adding, 116–117
entries added for, 65
moving/renaming, 153

organizationalUnit object class, 63, 65
DIT use of, 379

organization object class, 63
OrgChart, 404

and PropertyTable, 417–418
OrgChartPanel, 404, 405, 406, 417

properties, 407
OrgChartTree, 401, 402, 403, 405

and PropertyTable, 415–417

OrgChartTreeCellRenderer, 396
TreeCell.setFocus called by, 400

OSI. See Open System Interconnection
ou. See organizational unit
ou=People

ACIs for, 170

PADL Software, 603
Parent

moving entry to another, 153
Parsing

alternative strategy for management,
392–395

and combined searches, 516
of multipart data, 440
reporting relationships in directory,

380–392
of search strings, 450

Password-based authentication, 176
using, 177–178

PasswordCallback, 185
Password expiration, 519

controls, 558, 622
notification, 557–559

PasswordPolicy.java, 558
Passwords, 11, 12, 13, 14, 39, 108

administrative, 534
and authenticating, 103
for Configuration Directory Server Admin-

istration, 52
of Directory Manager, 53
and JavaBeans, 269
and ReBindProc, 492
and user preferences, 354
and user self-administration, 428–429. See

also Distinguished names
Patterns

in filter configuration files, 89
PBX. See Phone branch exchange
Performance, 518

cache, 159
directory search, 103–105
how to get it, 514–518
servlet, 485, 486

Perl, xv
Permissions, 243

for ACI, 166, 167, 170
asserting, 217, 244

686 Index

requesting, 271
and security levels, 216
and signing code, 218–220
syntax for, 173

Persistence, 344
restoring, 351

Persistent search
control, 518, 554, 556–557

Persistent Search: A Simple LDAP Change
Notification Mechanism, 597

Persistent Systems, 603
PersistSearch.java, 556
Person entries, 377, 379, 385, 386
PH, 20
Phone book servlet, 427–483, 441, 486

and connection pooling/data caching, 429
and corporate LDAP directory usage, 428
user self-administration with, 428–429

Phone branch exchange, 7
Photographs

storage/retrieval of, in directory, 121–134
piniedit utility, 218, 219, 244
Point-to-Point Protocol, 189
Policy Entry dialog box

of Java Plug-In Software, 229
Policy Tool dialog box

of Java Plug-In Software, 226, 227
Port 389, 60, 63, 66, 68, 122, 179, 403, 636
PPP. See Point-to-Point Protocol
Preferences

advantages/disadvantages with directory
structure modeling of, 374

as individual entries, 369
storing of, 135–146, 375
storing/retrieving Java objects as, 349
values, 373

Preferences class, 344, 345
declaring variables for extension of, 351

Prefixing, filter, 100
Pretty printer

for schema contents, 524–534
prettyPrint method, 77, 82, 84, 85, 87
Privacy

in LDAP, 25
Private key, 200, 202, 217, 222, 223, 263

for signing applet, 203
Private keys, 15
Privileged accounts, 107–108

Privilege Manager, 208
in Netscape Navigator, 204

Privileges, 204
and capabilities model, 208
connecting over network, 206
requesting, 243

PropertyChangeEvent notifications, 276, 280,
289

using, 289–291
for invisible JavaBeans, 270

PropertyChangeListener, 290
PropertyChangeSupport, 553–554
PropertyTable, 408, 409, 411

and OrgChart, 417–418
and OrgChartTree, 415–417
and TestTree, 418–420

Proprietary controls, 534
Proxied authorization, 26

control, 559–561
proxy permissions, 167, 174, 560
Public key, 15, 202

authentication, 14
cryptography, 200
encryption with, 201

Public-private key pairs, 15
generating, 222

Queues
and MaxBackLog, 498

Quipu, 22

RDN. See Relative distinguished name
read permissions, 167, 174
Reauthentication

classes for, 619
ReBindProc, 492
Reconnection

and failover, 579–580
transparent, 580

Records
inserting from data file, 113–116

Referral exceptions
catching and processing, 572–573

REFERRAL_LIMIT_EXCEEDED, 492
Referrals, 23, 76, 80, 273, 492, 506, 519

automatic, 80–81, 573–576
handling, 587
hop limits, 80

Index 687

Referrals (cont.)
managing, 572–576
processing of, 271
returns, 73
SDK following of, 489
and threads, 511

Relational database, 25
data organized in, 5
user information in, 4
vs. directory, 5–6

Relative distinguished names, 30, 31, 380,
633

renaming entry: modifying of, 151–158. See
also Distinguished names

rename method
forms of, 151–152
parent alteration with, 153

RenameRDN.java, 152
Replication

of directories, 505–506
and LDAP, 25
multimaster, 507

Reporting relationships
parsing in directory, 380–392

Request control
code for, 568–569

Request for Comments, 592–594
obtaining, 591–592

Requesting privileges, 243
ResourceSet class, 293, 651–653
Response control

code for, 569–571
Response message types, 582–583
Result queue

controlling, 580–581
Results

handling, 80–83
maximum number of, from search, 497

returnControls, 557
revertPrivilege method, 208
RFCs. See Request for Comments
Rhino, 265
Root DSE, 319
Root node, 30, 308

SafeConnect method
for trapping exceptions, 256–258

Safety
and cloned connections, 512–514

Sample database
setting up, 55–56

Sandbox, 204
applet working outside, 203
restrictions with, 199–200

SASL. See Simple Authentication and Security
Layer

SASL authentication, 182–196
and callbacks in SASL, 184–186
in LDAP, 183–184
preparing to use existing mechanism,

189–190
properties for, 184
SaslClient and ClientFactory, 190–196
and SASL framework classes, 186–189

SaslClient object, 187, 188, 190
Sasl.setClientFactory, 190
SavePrefs program, 137–146
Schema classes

programmatic access through, 519–524
Schema configuration files, 519
Schema contents

pretty printer for, 524–534
Schemas, 587

of directory, 27
managing, 519–534
obtaining for directory, 521–522

Scope, of search, 67, 68–69
SCOPE_BASE, 87

search, 69
SCOPE ONE, 70
SCOPE_SUB, 67–105

and attributes to request, 67, 71–73
and base distinguished name, 67, 68
and host name, 67, 68
and port, 67, 68
and scope, 67, 68–69
and search filter, 67, 70–71
and searching preferences, 67, 73–74

Search attributes
in search request, 72

Search constraints, 493–498
setting up, 75–76

Searches/searching
authenticating for, 102–103
combining, 516
and comparing, 87–88

Search filter configuration
filter prefixing/suffixing with, 100

688 Index

Search filters, 67, 70–71, 74–75, 88
child, 306
operators, 71
using, 78–80

Search-level cache
enabling, 517

Search options, 494
search permissions, 167, 174
Search preferences, 67, 73–74
SearchWithLimits.java, 496
Secure Sockets Layer, xvii, 25, 39, 108, 165,

196, 607
communicating over, 178–181
connecting to directory server over,

179–180
phone book servlet accessibility over, 429

Securing data, 165–196
access control list set-up, 166–172
authenticating directory, 176–177
communicating over Secure Sockets Layer,

178–181
modifying access control lists through

LDAP, 175–176
using certificate-based authentication,

181–182
using password-based authentication,

177–178
using SASL authentication, 182–196
viewing access control lists through LDAP,

172–175
Security, 108

applet, 199
and extended operations, 577
zones, 216

SecurityException, 244
Security Manager, 217
Self-signed certificate, 209, 210, 222

generating for Java Plug-in Software,
222–223

selfwrite permissions, 167, 174
Serialization, 136, 146

and deserializing data to/from directory,
137–146

and JavaBean, 269
of objects, 135

Server Instance Entry, 171
Server request controls, 534
Server-side sorting, 25, 73, 100, 450
ServerTimeLimit, 494, 495–497

Servlet engine, 423, 484
connection-pooling systems on, 485
error message for misconfigured CLASS-

PATH on, 426
and location of files, 426–427

Servlet model, 136
Servlets

designing LDAP, 425–427
LDAP used in, 424–425
overview of, 423–424
preloading of, 485
and proxied authorization, 561
request-response model, 439–440
setting up/using, 484–486

Set Access Permissions dialog box, 177
setBatchSize, 73
setDefaultReferralCredentials, 273
setDN, 410, 411
setHopLimit, 73
setMaxResults, 73
setOption, 490, 491
setProperty, 406
setReferrals, 73
setServerTimeLimit, 73
setTimeLimit, 491
setUpPool, 435–437
shift-jis, 342, 503
Shopping cart/shopping cart preferences
storing, 135, 425
Shortcuts (Windows), 497
SIE. See Server Instance Entry
Signature instruction file, 212, 213, 224
Signatures

for authenticate method, 276
signcode utility, 217, 218
Signed applets

and certificates, 200–204
Signing Software with Netscape Signing Tool

1.1, 209, 214
Signtool utility, 209, 210, 221, 222, 262, 263,

264
Simple Authentication and Security Layer, 39,

108, 182–196
authentication using, 176
and callbacks in SASL, 184–186
in LDAP, 183–184
and LDAPBind, 576
preparing to use existing mechanism,

189–190

Index 689

Simple Authentication and Security Layer
(cont.)

properties for, 184
SaslClient and ClientFactory, 190–196
and SASL framework classes, 186–189

Simple Authentication and Security Layer
(RFC 2222), 182, 183

SimpleBeanInfo class
BeanInfo class derived from, 238

Simple password authentication, 196
SimpleReferral class, 654
SimpleTable, 332, 332, 334

and TreePanel, 339
TreePanel joined with, 338

Single sign-on, 13, 15
SINGLE-VALUE, 521
SIZE_LIMIT_EXCEEDED, 498
Size limits, 495, 496
Smith, Mark C., 601
sn. See surname
sneakernet, 3
Software publishing certificate, 215, 217, 218
Solaris, 32, 423
Sort control, 537
Sorting, 48

results returned from server, 100
SortUtil class, 293, 654–655
“Sounds like” operator, 79
SPC. See Software publishing certificate
Specification of Abstract Syntax Notation

One, 600
SSLava package (Phaos Technology), 179–180
SslClient, 190, 194–196
SSL client authentication, 561
SSL Handshake Protocol, 179, 181
SSL sockets

creating, 181
implementing, 180

Static group, 158, 159, 160, 163
user added to, 161

Steedman, Doug, 602
String Representation of LDAP Search Filters,

The (RFC 2254), 593
Strings

encoding/decoding for use in LDAP URL,
502

handling arrays of, 262
returning, 98–100

Structural object classes, 658–661
subSchemaSubEntry attribute, 520
SUBSTRING element qualifier, 521
Substring searches

directory support for, 6
Subtree search

scope of, 69, 70
Suffixes, 30

and nonprivileged users, 331
public/private in directory, 308, 319

Suffixing, filter, 100
Summary of the X.500 (96) User Schema for

Use with LDAPv3 (RFC 2256), 593
Sun Microsystems, 20, 35
Sun Web site, 424
Superior reference, 572
surname attribute, 29, 63
Surname search example, 32–36
Synchronous interface, 581
Syntax

ACI, 175
for adding entries to directory, 59–60
of attributes, 521, 662
case-insensitive string, 380
for code signing, 223
for distinguished names, 64
dn, 380
for generating key pair/self-signed certifi-

cate, 222
for jarsigner tool, 225
with keytool utility, 225
for signing JavaScript code with signtool,

263
for signtool executable, 211, 213
for telephone numbers, 79
for value of aci attribute, 173

Tags, 104
in filter configuration files, 89

Tamemasa, Nobuo, 408
Target, 204
targetattr keyword, 173
targetfilter keyword, 173
target keyword, 173
TCP, 178
TCP/IP

LDAP use of, 22, 23
support, 21

690 Index

Teex multicharacter-set text editor, 342–374
class for user preferences, 344–352
saving preferences as object in directory,

365–369
storing preferences as attributes in user

entries, 353–365
Teex JavaBean, 342–343
using directory structure to model attrib-

utes, 369–374
telephoneNumber attribute, 63, 79, 83, 85,

118
multiple values for, 85

TestBeanApplet, 289
TestBeanApplet.html, 289, 290
TestBeanApplet.java, 290
Test certificates

generating, 209–210
generating in Microsoft Internet Explorer,

220
generating in Netscape Navigator, 209–210
listing in Netscape Navigator, 211

TestTree, 329
and PropertyTable, 418–420

Threads, 510
and Backlog property, 581
and persistent search, 556
and persistent search control, 518

Three-pane directory browser, 421
TIME_LIMIT_EXCEEDED, 491, 495
TimeLimit property, 491, 493
Time limits, 495, 496
Time To Live, 517
TLS. See Transport Layer Security
top object class, 26
toString method, 76
Trace level, 645–646
Transactions

dynamic attributes, 25
Transparent reconnection, 580, 587
Transport Layer Security, 25, 179, 196, 596
Tree

displaying nodes of directory in, 332
TreeCell class, 398, 399
TreeCellRenderer, 397
TreeModel, 293
TreePanel, 293, 296–304, 297, 305, 329, 331

and EntryListAdapter, 334
member variables of, 304

SimpleTable joined with, 338
and supporting classes, 292

TreePanelCellRenderer, 296
Trees

LDAP entries organized into, 30
nodes displayed in, 323

Trusted certificates, 225, 226
Trusted sites, 216
TTL. See Time To Live
Typedown, 536, 554

VLV-based directory lister with, 541–554

UCS2, 78, 504, 505
Unicode, 78, 503, 504
University of Michigan, 23, 24, 31

LDAP server, 166
URLs

LDAP, 499–503
USAGE element qualifier, 521
Use of Language Codes in LDAP (RFC 2596),

594
User attributes, 72
User ID, 108

uid attribute checked against, 355
User information

in directory, 4
User names, 14
userPassword attribute, 102, 174, 463
User preferences, 14

class for, 344–352
saving as object in directory, 365–369
storing, 375
storing as attributes in user entries,

353–365
in user entries, 353

Users
access allowance/denial to, 174
adding to group, 161
jpegPhoto attributes of, 408
removing from group, 161–162
storing preferences of, 341

UTF8, 342, 345, 505, 521
character set, 503
strings represented in, 78
transformations between UCS2 and, 504

Utility classes
for handling LDAP-specific entities, 38

util package, 645–655

Index 691

Valueless attributes, 83
Values

of aci attribute, 173
altering, for multivalued attributes, 120–121
for attributes, 77
binary, 413
enumeration of, 83
for extensions, 500
preference, 373
removing from attribute, 119
storing for single attribute, 81

VeriSign, 203, 209, 217, 222
Virtual List View, 26, 332, 519, 534,

535–539
control, 536
and indexes: defining VLV search/filter for

Netscape, 539–541
VLV-based directory lister with typedown,

541–554
Virtual List View request control, 538, 546

construction of, 561–562
entry for, 577

Virtual List View response control, 537, 538
ASN.1 notation for, 566

Virtual root node, 401
Visual Basic

using with LDAP classes, 264
Visual JavaScript, 290
VListDialog, 551, 551, 552
VListModel, 544, 545
VListPanel, 541, 542, 551, 552
VLV. See Virtual List View

Web browsers, 20
and LDAP URLs, 501

Web pages
and checkAuthentication, 277
creating for applets, 221
for importing CA certificate, 214–215
LDAPGetEntries Bean in, 285–287
for using Java Plug-In Software, 239–240

Web servers
and proxied authorization, 561
servlet engines in, 424

whois, 20
Wide-area directory services, 20
Wilcox, Mark, 601
Wild cards, 278

characters, 428
Windows NT, 423
Windows 2000, 32
World Wide Web, 20. See also Internet
Wrapper Java class, 254

and exception handling, 256
Wrappers

for Java objects, 250
write permissions, 167, 174

X.500, 21–22, 24, 26, 30, 520
books about, 601–602
LDAP as gateway to, 22
LDAP simplifications of, 23–24
links, 604

Xerox Clearinghouse, 19, 20
Xerox Network Systems, 19
XNS. See Xerox Network Systems

Zones
Internet Explorer Web sites grouped into,

216

692 Index

CD-ROM Warranty

Addison Wesley Longman, Inc., warrants the enclosed disc to be free of defects in
materials and faulty workmanship under normal use for a period of ninety days after
purchase. If a defect is discovered in the disc during this warranty period, a replace-
ment disc can be obtained at no charge by sending the defective disc, postage prepaid,
with proof of purchase to:

Editorial Department
Computer and Engineering Publishing Group
Addison-Wesley
One Jacob Way
Reading, Massachusetts 01867-3999

After the ninety-day period, a replacement disc will be sent upon receipt of the defec-
tive disc and a check or money order for $10.00, payable to Addison Wesley Long-
man, Inc.

Addison Wesley Longman, Inc., makes no warranty or representation, either
expressed or implied, with respect to this software, its quality, performance, mer-
chantability, or fitness for a particular purpose. In no event will Addison Wesley Long-
man, Inc., its distributors, or dealers be liable for direct, indirect, special, incidental,
or consequential damages arising out of the use or inability to use the software. The
exclusion of implied warranties is not permitted in some states. Therefore, the above
exclusion may not apply to you. This warranty provides you with specific legal rights.
There may be other rights that you may have that vary from state to state. The con-
tents of this CD-ROM are intended for personal use only.

More information and updates are available at:
http://www.awl.com/cseng/titles/0-201-65758-9

	Preface
	Acknowledgments
	PART I INTRODUCTION
	C H A P T E R 1 What Can You
Find in a
Directory?
	What Is a Directory?
	What’s That Phone Number?
	Directory Clients for an Online Phone Book
	Is He Really Who He Says He Is?
	Working Together
	Computers, Printers, Toasters . . .

	 C H A P T E R 2 The Lingua Franca of Directories Is LDAP
	A Brief History of Electronic Directories
	I Heard It through the Grapevine
	Directories for the Internet
	Directories for a Single Network: Proprietary Solutions
	X.500: The “Heavyweight” Directory Service
	From Humble Beginnings

	Future Directions for LDAP
	The LDAP Information and Naming Models:
How Directories Are Organized
	The LDAP Information Model
	The LDAP Naming Model

	LDAP Spoken Here
	Many Roads to Rome
	Directory SDK for C
	Directory SDK for Java
	Java Naming and Directory Interface

	C H A P T E R 3 May We
Introduce—
Directory SDK
for Java
	What Directory SDK for Java Can Do for You
	Freedom from Protocol Handling
	The Use of Standard Java Objects for Returning
and Processing Data
	Utility Classes for Handling LDAP-Specific Entities
	Full Access to All LDAP Services
	Flexible Authentication Models
	Write Once, Run Anywhere
	Multilayered Functionality
	A Platform for Directory-Enabled Applications

	What Else Can the SDK Do for Me?
	Dynamic Organizational Chart
	Directory-Linking Tool
	Access Control for Existing or New Applications

	Installation and Setup of the SDK
	Staying Current
	Installing the SDK

	Conclusion

	PART II GETTING
STARTED
	C H A P T E R 4 Setting Up Your
Own Directory
	Downloading and Installing Netscape Directory Server
	Before You Download and Install the Software
	Downloading Netscape Directory Server
	Installing Netscape Directory Server
	Setting Up the Sample Database

	Using the Command-Line
Tools with Your New Directory
	Adding Entries to the Directory
	Finding Entries with LDAPSearch
	Understanding LDIF: How to Describe a Directory Entry
	Object Classes: Determining What Information
Makes Up an Entry
	Choosing a Distinguished Name: Where
Do You Want to Add the Entry?
	Examples of Defining and Adding Entries

	Conclusion

	C H A P T E R 5 Searching with the SDK
	Our First Search
	Host Name
	Port
	Base DN
	Scope
	Filter
	Attributes
	Search Preferences
	Our First Search Program

	Using Search Filters
	Handling Results
	Attributes in Detail
	I Want Only One Record and I Have the DN
	Searching and Comparing
	More on Filters
	Sorting
	Authenticating for Searches
	Improving Directory Search Performance
	Use Indexed Attributes
	Specify an Object Class to Get Only Entries
of the Desired Type
	Retrieve Only Attributes You Need
	Keep the DN Handy
	Use compare Where It Makes Sense

	Conclusion

	C H A P T E R 6 Creating and
Maintaining
Information
	Before We Can Update: Authentication Basics
	Adding an Entry
	Summary of Steps to Add a New Entry
	Inserting Records from a Data File
	Adding an Organizational Unit
	Processing Exceptions

	Modifying an Existing Entry
	Summary of Steps to Modify an Existing Entry
	Adding an Attribute
	Modifying an Attribute
	Removing an Attribute
	Updating Multivalued Attributes
	Storing Binary Data
	Storing Preferences and State

	Deleting an Entry
	Renaming an Entry: Modifying the RDN
	Managing Groups
	Adding a User to a Group
	Removing a User from a Group
	Using the LDAPIsMember Bean

	Conclusion

	C H A P T E R 7 Securing
the Data
	No Standards for Access Control
	Setting Up an Access Control List
	Viewing Access Control Lists through LDAP
	Modifying Access Control Lists through LDAP
	Authenticating to the Directory
	Using Password-Based Authentication
	Communicating over Secure Sockets Layer
	Using Certificate-Based Authentication
	Using SASL Authentication
	Authenticating with SASL in LDAP
	Callbacks in SASL
	The SASL Framework Classes
	Preparing to Use an Existing Mechanism
	Your Own SaslClient and ClientFactory

	Conclusion

	PART I I I GETTING DOWN
AND DIRTY
	C H A P T E R 8 GETTING DOWN AND DIRTY
	What’s So Different about an Applet?
	Certificates and Signed Applets
	Writing LDAP Applets for Netscape Navigator
	Requesting Connection Privileges
	Packaging Your Applet
	Generating a Test Certificate
	Signing Your Code
	Testing Your Applet
	Using the Codebase as a Principal

	Writing LDAP Applets for Microsoft Internet Explorer
	Requesting Connection Privileges
	Packaging Your Applet
	Generating a Test Certificate
	Signing Your Code

	Creating a Web Page for the Applet
	Writing LDAP Applets for Java Plug-In Software
	Packaging Your Applet
	Generating a Key Pair and Self-signed Certificate
	Signing Your Code
	Setting Up the End User’s System

	A Directory Viewer Applet
	A Simple Example for Java Plug-In Software

	Conclusion

	C H A P T E R 9 Scripting LDAP:
JavaScript
and Java
	Accessing Java Applets from JavaScript
	Accessing Java Objects from JavaScript
	JavaScript Gotchas
	Handling Java Exceptions in JavaScript
	Handling Arrays of Strings
	Requesting Privileges and Signing Your JavaScript Code
	Accessing the LDAP Classes from JScript in Internet Explorer

	Conclusion

	C H A P T E R 1 0 Don’t Redo It,
Reuse It: LDAP
JavaBeans
	Invisible LDAP JavaBeans
	LDAPBasePropertySupport
	LDAPSimpleAuth
	LDAPGetEntries
	Directory-Based Authentication in JavaScript
	Using PropertyChangeEvent Notifications

	Graphical LDAP JavaBeans
	A Directory Browser
	A Directory Lister

	Conclusion

	C H A P T E R 1 1 Make Your
Application
 Location-Independent
	The Teex Multicharacter-Set Text Editor
	The Teex JavaBean
	A Class for User Preferences
	Storing Preferences as Attributes in User Entries
	Saving Preferences as an Object in the Directory
	Using Directory Structure to Model Attributes

	Conclusion

	C H A P T E R 1 2 Modeling
Relationships
	Mirroring an Organizational Structure
	Attributes as Pointers
	Parsing the Reporting Relationships in a Directory
	An Alternative Strategy for Management Parsing
	An Organizational Chart Tree Component
	A More Traditional Organizational Chart Component
	Inspecting Properties of an Entry
	Connecting the Property Table and the Directory Viewers

	Conclusion

	C H A P T E R 1 3 Servlets and
LDAP
	Overview of Servlets
	Uses of LDAP in Servlets
	Designing the LDAP Servlet
	Location of Files

	Our Phone Book Servlet
	Phone Book Lookups
	Accessibility with a Simple Browser
	Utilizing the Corporate LDAP Directory
	Customizability
	Search Attributes
	Intranet and Extranet
	User Self-administration
	Connection Pooling and Data Caching
	Accessibility over SSL
	Connection-Pooling Class
	Servlet Request-Response Model

	Setting Up and Using the Servlet
	Tips for Servlet Developers
	Conclusion

	PART IV BEYOND
THE BASICS
	C H A P T E R 1 4 Options and
Constraints
	How Do They Affect Me?
	A View into Options
	TimeLimit
	Referrals
	BindProc
	ReBindProc
	HopLimit

	Constraints for Searching
	ServerTimeLimit
	MaxResults
	BatchSize
	MaxBackLog

	Conclusion

	C H A P T E R 1 5 Odds and Ends
	LDAP URLs
	An IETF Standard
	Using LDAP URLs in Java
	Not Your Average URL

	A Rose by Any Other Name . . .
	When What You Read Is Not What You Wrote
	Sometimes One Thread Is Not Enough
	Don’t Step on My Settings
	A Cloned Connection Is a Safe Connection

	Performance, and How to Get It
	Breaking Up Is Hard to Do: Avoid Unnecessary Connections
	Pool the Connections
	Fewer But Better Searches
	To Cache or Not to Cache

	Conclusion

	C H A P T E R 1 6 Advanced Topics
	Information about Information: Managing the Schema
	Programmatic Access through the Schema Classes
	A Pretty Printer for Schema Contents

	Controls: An Essential Extension
	Too Much Data: A Virtual List View
	Call Me When You’re Ready: Persistent Search
	Password Expiration Notification
	Trust Me: The Proxied Authorization Control
	Your Very Own Controls: Using the BER Package

	When the Data Lives Elsewhere: Managing Referrals
	Catching and Processing Referral Exceptions
	Automatic Referrals: Anonymous or under Client Control
	The manageDsaIT Control
	LDAPBind for Complete Client Control

	And Now for Something Completely
Different: Extended Operations
	Aiming for 247: Failover and Reconnecting
	Transparent Reconnection

	Controlling the Result Queue: The Connection Backlog
	Down to the Wire: Using the Asynchronous Interface
	Conclusion

	PART V APPENDICES
	A P P E N D I X A More to Learn
about LDAP
	Going to the Source: Internet Standards
	Where to Get RFCs and Internet Drafts
	LDAP RFCs
	LDAP Internet Drafts
	X.500 Documents

	Books about LDAP
	LDAP Concepts and Deployment
	LDAP Programming
	X.500

	LDAP Information on the Internet
	LDAP FAQs and Presentations
	LDAP Client SDKs
	LDAP Server Vendors
	Add-On Products for LDAP Directories
	Collections of LDAP Documents and Links
	X.500
	Miscellaneous

	Newsgroups Where LDAP Is Spoken
	LDAP in Your Inbox
	LDAP Servers at Your Disposal

	A P P E N D I X B Classes of the LDAP SDK
	The netscape.ldap Package
	LDAPConnection and Connection Management
	Basic LDAP Message and Data Encapsulation
	Handling Messages from the Server
	Authentication and Reauthentication
	Exceptions
	Controls
	Caching
	Client-Side Sorting
	Schema Representation
	Miscellaneous Utility Classes

	The netscape.ldap.util Package
	DNs and RDNs
	LDIF Reader Classes
	Connection Pool

	A P P E N D I X C LDAP Utility
Classes on the
CD-ROM
	The table Package
	The util Package

	A P P E N D I X D Common
LDAP Schema
Elements
	Object Classes
	Abstract Object Classes
	Structural Object Classes
	Auxiliary Object Classes

	Attributes
	Attribute Syntaxes
	Attribute Types

	A P P E N D I X E LDAP Error
Codes
	Index

